organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­pyridinium picrate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Sri Ramakrishna Mission Vidyalaya Arts and Science College, Coimbatore 641 020, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 March 2010; accepted 24 March 2010; online 31 March 2010)

In the title compound, C5H7N2+·C6H2N3O7, the 4-amino­pyridinium cation is essentially planar (r.m.s. deviation = 0.002 Å). The three nitro groups in the picrate anion are twisted away from the attached benzene ring [dihedral angles = 24.1 (1), 9.3 (3) and 21.4 (1)°]. In the crystal structure, the ions are linked into a three-dimensional network by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to picrate complexes, see: In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zaderenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]); Ashwell et al. (1995[Ashwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S. & Brown, C. R. (1995). Nature (London), 375, 385-388.]); Owen & White (1976[Owen, J. R. & White, E. A. D. (1976). J. Mater. Sci. 11, 2165-2169.]); Shakir et al. (2009[Shakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871-3875.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C6H2N3O7

  • Mr = 323.23

  • Monoclinic, P 21 /c

  • a = 8.5056 (7) Å

  • b = 11.3338 (9) Å

  • c = 14.3307 (11) Å

  • β = 104.162 (5)°

  • V = 1339.50 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.978

  • 12562 measured reflections

  • 3311 independent reflections

  • 2637 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 3311 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (2) 1.82 (2) 2.6877 (16) 158 (2)
N1—H1⋯O7i 0.91 (2) 2.34 (2) 2.9359 (19) 122 (2)
N7—H7A⋯O6ii 0.88 (2) 2.30 (3) 3.139 (2) 160 (2)
N7—H7B⋯O5iii 0.88 (2) 2.23 (2) 3.065 (2) 158 (2)
C2—H2⋯O4iv 0.93 2.47 3.1373 (19) 129
C2—H2⋯O7i 0.93 2.43 2.9980 (19) 119
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It is well known that picric acid forms charge transfer molecular complexes with a number of aromatic compounds such as aromatic hydrocarbons and amines through electrostatic or hydrogen bonding interactions (In et al., 1997; Zaderenko et al., 1997). The bonding of donor-acceptor picric acid complexes strongly depends on the nature of partners. Some of the picric acid complexes crystallize in centrosymmetric space group though they possess non-linear optical (NLO) properties (Shakir et al., 2009). This is due to the aggregation of the donor and acceptor molecules in a non-centrosymmetric manner which contribute to the bulk susceptibility from intermolecular charge transfer process (Ashwell et al., 1995; Owen & White, 1976).

The 4-aminopyridinium cation is essentially planar (r.m.s. deviation 0.002 Å). In the picrate anion, as a result of deprotanation the C8—O1 distance [1.2392 (16) Å] shows a partial double bond character, and the C8—C9 [1.4568 (17) Å] and C8—C13 [1.4562 (17) Å] distances are longer compared to other aromatic C—C distances. The three nitro groups are twisted out of the attached benzene ring by 24.1 (1)° [N14/O2/O3], 9.3 (3)° [N15/O4/O5] and 21.4 (1)° [N16/O6/O7], which facilitate the interactions between the neighbouring molecules.

The ions are linked through N—H···O and C—H···O hydrogen bonds to form a three-dimensional network as shown in Fig. 2.

Related literature top

For general background to picrate complexes, see: In et al. (1997); Zaderenko et al. (1997); Ashwell et al. (1995); Owen & White (1976); Shakir et al. (2009).

Experimental top

Equimolar solutions of 4-aminopyridine in methanol and picric acid in methanol were mixed together. The solution was stirred well for 1 h and the precipited salt was filtered off. The salt was repeatedly recrystallised from methanol to get single crystals suitable for X-ray analysis.

Refinement top

N-bound H atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-Aminopyridinium picrate top
Crystal data top
C5H7N2+·C6H2N3O7F(000) = 664
Mr = 323.23Dx = 1.603 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1853 reflections
a = 8.5056 (7) Åθ = 2.3–28.4°
b = 11.3338 (9) ŵ = 0.14 mm1
c = 14.3307 (11) ÅT = 293 K
β = 104.162 (5)°Block, colourless
V = 1339.50 (18) Å30.22 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3311 independent reflections
Radiation source: fine-focus sealed tube2637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.970, Tmax = 0.978k = 1514
12562 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3813P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3311 reflectionsΔρmax = 0.24 e Å3
221 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (2)
Crystal data top
C5H7N2+·C6H2N3O7V = 1339.50 (18) Å3
Mr = 323.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5056 (7) ŵ = 0.14 mm1
b = 11.3338 (9) ÅT = 293 K
c = 14.3307 (11) Å0.22 × 0.19 × 0.16 mm
β = 104.162 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3311 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2637 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.978Rint = 0.026
12562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
3311 reflectionsΔρmin = 0.18 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87969 (13)0.03133 (9)0.06515 (7)0.0445 (3)
O20.97300 (19)0.02415 (13)0.25752 (9)0.0734 (4)
O31.20628 (16)0.09976 (12)0.31608 (8)0.0632 (4)
O41.35225 (16)0.45326 (12)0.18781 (9)0.0664 (4)
O51.23283 (19)0.50978 (11)0.04473 (10)0.0700 (4)
O60.92217 (17)0.22433 (12)0.16703 (7)0.0654 (4)
O70.76429 (15)0.11110 (13)0.11519 (8)0.0686 (4)
N10.37289 (15)0.09339 (12)0.03722 (9)0.0441 (3)
H10.293 (2)0.0390 (18)0.0159 (15)0.068 (6)*
C20.46638 (18)0.09158 (14)0.12753 (11)0.0463 (4)
H20.45150.03220.16940.056*
C30.58135 (18)0.17420 (14)0.15875 (11)0.0458 (4)
H30.64510.17100.22150.055*
C40.60534 (17)0.26532 (13)0.09690 (10)0.0396 (3)
C50.50530 (19)0.26449 (15)0.00273 (11)0.0481 (4)
H50.51640.32260.04100.058*
C60.39262 (19)0.17818 (15)0.02361 (11)0.0496 (4)
H60.32710.17810.08590.060*
N70.71790 (19)0.34716 (14)0.12736 (12)0.0543 (4)
H7A0.774 (3)0.347 (2)0.1874 (18)0.083 (7)*
H7B0.721 (3)0.404 (2)0.0858 (16)0.072 (6)*
C80.96034 (15)0.12354 (11)0.07454 (9)0.0325 (3)
C91.06752 (16)0.16121 (11)0.16521 (9)0.0338 (3)
C101.15984 (17)0.26074 (12)0.17653 (9)0.0364 (3)
H101.22670.27930.23640.044*
C111.15372 (17)0.33411 (11)0.09862 (9)0.0356 (3)
C121.05870 (16)0.30622 (11)0.00840 (9)0.0346 (3)
H121.05670.35540.04380.041*
C130.96746 (15)0.20496 (11)0.00293 (8)0.0327 (3)
N141.08227 (17)0.08920 (11)0.25121 (8)0.0442 (3)
N151.25248 (16)0.43901 (11)0.11136 (9)0.0455 (3)
N160.87848 (15)0.17853 (11)0.10042 (8)0.0400 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0511 (6)0.0403 (6)0.0398 (5)0.0122 (5)0.0065 (4)0.0028 (4)
O20.1011 (11)0.0720 (9)0.0468 (7)0.0287 (8)0.0177 (7)0.0152 (6)
O30.0769 (8)0.0652 (8)0.0380 (6)0.0098 (6)0.0041 (6)0.0119 (5)
O40.0691 (8)0.0613 (8)0.0600 (7)0.0231 (6)0.0010 (6)0.0163 (6)
O50.1005 (11)0.0484 (7)0.0610 (8)0.0287 (7)0.0195 (7)0.0038 (6)
O60.0881 (9)0.0751 (8)0.0285 (5)0.0328 (7)0.0058 (5)0.0052 (5)
O70.0656 (8)0.0859 (9)0.0437 (6)0.0384 (7)0.0070 (5)0.0073 (6)
N10.0392 (6)0.0432 (7)0.0462 (7)0.0040 (6)0.0036 (5)0.0038 (5)
C20.0447 (8)0.0427 (8)0.0476 (8)0.0033 (7)0.0037 (6)0.0092 (6)
C30.0437 (8)0.0485 (9)0.0393 (7)0.0047 (7)0.0010 (6)0.0064 (6)
C40.0370 (7)0.0388 (7)0.0434 (7)0.0002 (6)0.0103 (6)0.0004 (6)
C50.0498 (8)0.0520 (9)0.0413 (8)0.0002 (7)0.0090 (6)0.0107 (7)
C60.0475 (8)0.0611 (10)0.0363 (7)0.0000 (7)0.0025 (6)0.0014 (7)
N70.0582 (9)0.0496 (8)0.0526 (8)0.0150 (7)0.0087 (7)0.0019 (7)
C80.0353 (6)0.0326 (6)0.0303 (6)0.0013 (5)0.0090 (5)0.0008 (5)
C90.0420 (7)0.0331 (6)0.0267 (6)0.0048 (5)0.0094 (5)0.0013 (5)
C100.0440 (7)0.0366 (7)0.0266 (6)0.0026 (6)0.0046 (5)0.0065 (5)
C110.0424 (7)0.0304 (6)0.0344 (6)0.0039 (5)0.0103 (5)0.0060 (5)
C120.0431 (7)0.0317 (6)0.0296 (6)0.0004 (5)0.0102 (5)0.0006 (5)
C130.0366 (7)0.0342 (6)0.0260 (6)0.0004 (5)0.0053 (5)0.0006 (5)
N140.0647 (8)0.0376 (6)0.0309 (6)0.0053 (6)0.0130 (5)0.0027 (5)
N150.0547 (7)0.0380 (6)0.0451 (7)0.0098 (6)0.0147 (6)0.0108 (5)
N160.0461 (7)0.0396 (6)0.0306 (5)0.0053 (5)0.0021 (5)0.0023 (5)
Geometric parameters (Å, º) top
O1—C81.2392 (16)C5—C61.357 (2)
O2—N141.2069 (18)C5—H50.93
O3—N141.2293 (17)C6—H60.93
O4—N151.2214 (17)N7—H7A0.88 (2)
O5—N151.2267 (18)N7—H7B0.88 (2)
O6—N161.2216 (15)C8—C131.4562 (17)
O7—N161.2130 (16)C8—C91.4568 (17)
N1—C61.335 (2)C9—C101.3613 (19)
N1—C21.3432 (19)C9—N141.4578 (17)
N1—H10.91 (2)C10—C111.3829 (19)
C2—C31.349 (2)C10—H100.93
C2—H20.93C11—C121.3832 (18)
C3—C41.408 (2)C11—N151.4413 (17)
C3—H30.93C12—C131.3726 (18)
C4—N71.328 (2)C12—H120.93
C4—C51.408 (2)C13—N161.4481 (16)
C6—N1—C2120.05 (13)C10—C9—C8124.47 (11)
C6—N1—H1118.0 (13)C10—C9—N14115.81 (12)
C2—N1—H1121.9 (13)C8—C9—N14119.71 (12)
N1—C2—C3121.28 (14)C9—C10—C11119.70 (12)
N1—C2—H2119.4C9—C10—H10120.1
C3—C2—H2119.4C11—C10—H10120.1
C2—C3—C4120.36 (14)C10—C11—C12121.01 (12)
C2—C3—H3119.8C10—C11—N15119.22 (12)
C4—C3—H3119.8C12—C11—N15119.74 (12)
N7—C4—C3120.62 (14)C13—C12—C11119.06 (12)
N7—C4—C5122.52 (15)C13—C12—H12120.5
C3—C4—C5116.85 (13)C11—C12—H12120.5
C6—C5—C4119.43 (14)C12—C13—N16115.72 (11)
C6—C5—H5120.3C12—C13—C8124.57 (11)
C4—C5—H5120.3N16—C13—C8119.67 (11)
N1—C6—C5122.02 (14)O2—N14—O3122.46 (13)
N1—C6—H6119.0O2—N14—C9119.79 (13)
C5—C6—H6119.0O3—N14—C9117.73 (13)
C4—N7—H7A119.8 (16)O4—N15—O5122.97 (14)
C4—N7—H7B115.0 (14)O4—N15—C11118.57 (13)
H7A—N7—H7B125 (2)O5—N15—C11118.46 (13)
O1—C8—C13125.23 (12)O7—N16—O6121.00 (12)
O1—C8—C9123.57 (12)O7—N16—C13120.38 (11)
C13—C8—C9111.14 (11)O6—N16—C13118.61 (11)
C6—N1—C2—C30.1 (2)C11—C12—C13—N16176.65 (12)
N1—C2—C3—C40.4 (2)C11—C12—C13—C81.1 (2)
C2—C3—C4—N7179.73 (16)O1—C8—C13—C12179.30 (13)
C2—C3—C4—C50.4 (2)C9—C8—C13—C122.13 (18)
N7—C4—C5—C6179.98 (16)O1—C8—C13—N161.6 (2)
C3—C4—C5—C60.2 (2)C9—C8—C13—N16175.54 (11)
C2—N1—C6—C50.2 (2)C10—C9—N14—O2155.92 (14)
C4—C5—C6—N10.1 (2)C8—C9—N14—O224.9 (2)
O1—C8—C9—C10178.44 (13)C10—C9—N14—O322.44 (18)
C13—C8—C9—C101.22 (18)C8—C9—N14—O3156.74 (13)
O1—C8—C9—N140.7 (2)C10—C11—N15—O48.1 (2)
C13—C8—C9—N14177.89 (11)C12—C11—N15—O4169.71 (13)
C8—C9—C10—C110.7 (2)C10—C11—N15—O5172.10 (14)
N14—C9—C10—C11179.83 (12)C12—C11—N15—O510.1 (2)
C9—C10—C11—C121.9 (2)C12—C13—N16—O7160.64 (14)
C9—C10—C11—N15179.76 (12)C8—C13—N16—O721.5 (2)
C10—C11—C12—C131.1 (2)C12—C13—N16—O620.26 (19)
N15—C11—C12—C13178.88 (12)C8—C13—N16—O6157.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)1.82 (2)2.6877 (16)158 (2)
N1—H1···O7i0.91 (2)2.34 (2)2.9359 (19)122 (2)
N7—H7A···O6ii0.88 (2)2.30 (3)3.139 (2)160 (2)
N7—H7B···O5iii0.88 (2)2.23 (2)3.065 (2)158 (2)
C2—H2···O4iv0.932.473.1373 (19)129
C2—H2···O7i0.932.432.9980 (19)119
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C6H2N3O7
Mr323.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5056 (7), 11.3338 (9), 14.3307 (11)
β (°) 104.162 (5)
V3)1339.50 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.970, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
12562, 3311, 2637
Rint0.026
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections3311
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)1.82 (2)2.6877 (16)158 (2)
N1—H1···O7i0.91 (2)2.34 (2)2.9359 (19)122 (2)
N7—H7A···O6ii0.88 (2)2.30 (3)3.139 (2)160 (2)
N7—H7B···O5iii0.88 (2)2.23 (2)3.065 (2)158 (2)
C2—H2···O4iv0.932.473.1373 (19)129
C2—H2···O7i0.932.432.9980 (19)119
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors wish to thank TBI Consultancy, University of Madras, for the data collection.

References

First citationAshwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S. & Brown, C. R. (1995). Nature (London), 375, 385–388.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOwen, J. R. & White, E. A. D. (1976). J. Mater. Sci. 11, 2165–2169.  CrossRef CAS Web of Science Google Scholar
First citationShakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871–3875.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds