organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[1-(4-Methyl­phen­ylsulfon­yl)-1,4-di­hydro­pyridin-4-yl]-1H-indole

aCentro de Química, Universidade do Minho, Campus de Gualtar, 4710-452 Braga, Portugal
*Correspondence e-mail: pelopes@netc.pt

(Received 11 March 2010; accepted 18 March 2010; online 24 March 2010)

In the title compound, C20H18N2O2S, the indole mean plane and benzene ring form a dihedral angle of 65.0 (1)°. In the crystal structure, weak inter­molecular N—H⋯π and C—H⋯O inter­actions link the mol­ecules into ribbons propagated along [100].

Related literature

For the pharmacological activity of compounds containing indole and pyridine fragments, see: Fanshawe et al. (1970[Fanshawe, W. J., Bauers, V. J., Safir, S. R., Blickens, D. A. & Riggi, S. J. (1970). J. Med. Chem. 13, 993-995.]); Bennasar et al. (1990[Bennasar, M.-L., Alvarez, M., Lavilla, R., Zulaica, E. & Bosch, J. (1990). J. Org. Chem. 55, 1156-1168.]); Lavilla et al. (1997[Lavilla, R., Gotsens, T., Santano, M. C., Bosch, J., Camins, A., Arnau, N., Escubedo, E., Camarasa, J. & Pallas, M. (1997). Bioorg. Chem. 25, 169-178.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O2S

  • Mr = 350.42

  • Orthorhombic, P 21 21 21

  • a = 7.9192 (9) Å

  • b = 11.4344 (13) Å

  • c = 19.168 (2) Å

  • V = 1735.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.47 × 0.45 × 0.42 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • 11335 measured reflections

  • 4115 independent reflections

  • 2830 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.01

  • 4115 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1718 Friedel pairs

  • Flack parameter: −0.07 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.54 3.370 (3) 149
N1—H1⋯Cgii 0.83 (3) 2.51 3.207 (3) 143
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

A vast number of compounds containing both indole and pyridine fragments exhibit pharmacological activity (Fanshawe et al. 1970, Lavilla et al. 1997). Attempted N-tosylation of indole in pyridine gave a product which did not correspond to the expected N-tosylindole. Crystallization of this compound from acetonitrile yielded light pink crystals of a compound that by ESI-MS, 1H and 13C NMR data showed to contain indole, dihydropyridine and the tosyl group. Following studies on the nucleophilic addition of indole to pyridinium salts (Bennasar et al., 1990; Lavilla et al. 1997) the structure for the isolated compound was suggested to be 3-{1-[(4-Methylphenyl)sulfonil]-1,4-dihydropyridin-4-yl}-1H- indole (Scheme 1) and later confirmed by single-crystal X-ray diffraction (Figure 1).

Related literature top

For the pharmacological activity of compounds containing indole and pyridine fragments, see: Fanshawe et al. (1970); Bennasar et al. (1990); Lavilla et al. 1997).

Experimental top

To a solution of indole (5.0 g; 4.3x10-2 mol) in pyridine (10 mL) tosyl chloride (5.4 g; 2.8x10-2 mol) was added at 0°C. The mixture was left stirring for 90 minutes, at room temperature, then HCl (10%) was added dropwise until neutral and the mixture was extracted with chloroform (4x20 ml). The organic extracts were combined, dried (MgSO4), and evaporated to dryness to give an oily orange solid (3.1 g, η=20%). Crystallization from acetonitrile gave light pink crystals (0.9 g), m.p. 147.8-150.7°C of 3-{1-[(4-Methylphenyl)sulfonil]-1,4-dihydropyridin-4-yl}-1H-indole.

1H NMR, (DMSO-d6, 300 MHz): δ 10.84 (s, 1H, NH), 7.78 (d, 2H, J = 8.1 Hz, H-2" and H-6"), 7.49 (d, 2H, J = 8.1 Hz, H-3" and H-5"), 7.29 (d, 1H, J=7.8 Hz, H-4), 7.14 (d, 1H, J=7.8 Hz, H-7), 7.01 (t, 1H, J=7.5 Hz, H-6), 6.85 (d, 1H, J=2.4 Hz, H-2), 6.72 (t, 1H, J=7.8, H-5), 6.61 (dd, 2H, J=1,5 e 8.1 Hz, H-2' e H-6'), 5.02 (dd, 2H, J=2.4 e 8.7 Hz, H-3' e H-5'), 4.27 (m, 1H, H-4'), 2.46 (s, 3H, CH3). 13C NMR (DMSO-d6): δ 144.53 (C-4"), 136.60 (C-7a), 134.31 (C-1"), 130.20 (C-3" and C-5"), 126.87 (C-2" and C-6"), 125.78 (C-3a), 122.26 (C-2), 121.06 (C-2' and C-6'), 120.93 (C-6), 118.46 (C-7), 118.21 (C-5 or C-1), 118.16 (C-5 or C-1), 111.71 (C-3' and C-5'), 111.48 (C-4), 29.17 (C-4'), 21.12 (CH3). ESI- MS: The molecular ion was not observed, only the ion at 195 (M-155)+ corresponding to the loss of tosyl from the molecular ion.

Refinement top

C-bound H atoms were geometrically positioned (C–H 0.93-0.96 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C). Atom H1 was located on a difference map and isotropically refined with bond restraint N–H = 0.85 (3) Å.

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50 % probability displacement ellipsoids.
3-[1-(4-Methylphenylsulfonyl)-1,4-dihydropyridin-4-yl]-1H-indole top
Crystal data top
C20H18N2O2SF(000) = 736
Mr = 350.42Dx = 1.341 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2827 reflections
a = 7.9192 (9) Åθ = 2.6–21.5°
b = 11.4344 (13) ŵ = 0.20 mm1
c = 19.168 (2) ÅT = 293 K
V = 1735.7 (3) Å3Prism, light pink
Z = 40.47 × 0.45 × 0.42 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2830 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
phi and ω scansh = 1010
11335 measured reflectionsk = 1014
4115 independent reflectionsl = 2522
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2268P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4115 reflectionsΔρmax = 0.17 e Å3
231 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1718 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (8)
Crystal data top
C20H18N2O2SV = 1735.7 (3) Å3
Mr = 350.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9192 (9) ŵ = 0.20 mm1
b = 11.4344 (13) ÅT = 293 K
c = 19.168 (2) Å0.47 × 0.45 × 0.42 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2830 reflections with I > 2σ(I)
11335 measured reflectionsRint = 0.036
4115 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.24 e Å3
4115 reflectionsAbsolute structure: Flack (1983), 1718 Friedel pairs
231 parametersAbsolute structure parameter: 0.07 (8)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.43816 (8)0.16555 (6)0.18936 (3)0.05332 (19)
O10.5841 (2)0.12035 (19)0.22313 (9)0.0705 (6)
O20.3845 (3)0.28318 (17)0.20181 (9)0.0720 (6)
N10.1929 (3)0.2711 (2)0.05481 (12)0.0609 (7)
H10.249 (4)0.330 (3)0.0446 (15)0.078 (10)*
C10.1217 (3)0.1920 (2)0.01063 (12)0.0458 (6)
C20.1307 (3)0.1842 (3)0.06159 (12)0.0561 (7)
H20.18720.24040.08770.067*
C30.0535 (4)0.0909 (2)0.09299 (12)0.0592 (7)
H30.06010.08250.14120.071*
C40.0354 (3)0.0080 (2)0.05365 (12)0.0529 (6)
H40.08850.05380.07640.063*
C50.0459 (3)0.01583 (19)0.01780 (11)0.0440 (5)
H50.10600.03960.04320.053*
C60.0352 (3)0.10865 (18)0.05181 (11)0.0366 (5)
C70.0614 (3)0.14245 (19)0.12343 (10)0.0415 (5)
C80.1592 (3)0.2394 (2)0.12171 (12)0.0548 (7)
H80.19820.27890.16090.066*
C90.0027 (3)0.0848 (2)0.18946 (11)0.0444 (6)
H90.06800.11320.22790.053*
C100.0131 (3)0.0452 (2)0.18840 (12)0.0463 (6)
H100.11940.07690.18020.056*
C110.1134 (3)0.1181 (2)0.19833 (11)0.0459 (6)
H110.09280.19790.19490.055*
N20.2792 (2)0.08014 (18)0.21399 (9)0.0445 (5)
C130.3048 (3)0.0418 (2)0.21675 (11)0.0473 (6)
H130.41280.06970.22600.057*
C120.1825 (3)0.1175 (2)0.20673 (10)0.0462 (6)
H120.20840.19660.21050.055*
C140.4588 (3)0.1429 (2)0.09933 (11)0.0456 (6)
C150.5422 (3)0.0451 (2)0.07507 (12)0.0542 (6)
H150.59290.00640.10630.065*
C160.5499 (3)0.0241 (2)0.00439 (13)0.0595 (7)
H160.60640.04190.01170.071*
C170.4753 (4)0.0990 (3)0.04315 (12)0.0563 (7)
C180.3938 (4)0.1972 (2)0.01774 (13)0.0611 (7)
H180.34510.24930.04900.073*
C190.3829 (3)0.2198 (2)0.05302 (13)0.0549 (7)
H190.32570.28540.06920.066*
C200.4842 (5)0.0734 (3)0.12010 (14)0.0867 (11)
H20A0.41080.12590.14480.130*
H20B0.44940.00580.12850.130*
H20C0.59810.08380.13610.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0401 (3)0.0752 (5)0.0447 (3)0.0101 (3)0.0001 (3)0.0173 (3)
O10.0388 (10)0.1244 (18)0.0481 (9)0.0081 (11)0.0087 (8)0.0082 (10)
O20.0725 (13)0.0654 (12)0.0783 (13)0.0150 (10)0.0113 (10)0.0355 (10)
N10.0710 (17)0.0531 (14)0.0587 (14)0.0285 (13)0.0069 (11)0.0050 (12)
C10.0458 (13)0.0460 (14)0.0457 (12)0.0012 (12)0.0048 (10)0.0067 (11)
C20.0607 (15)0.0638 (18)0.0438 (13)0.0057 (14)0.0102 (12)0.0176 (13)
C30.0673 (18)0.0776 (19)0.0328 (12)0.0201 (17)0.0006 (13)0.0021 (12)
C40.0640 (17)0.0497 (14)0.0451 (13)0.0098 (13)0.0084 (12)0.0085 (12)
C50.0489 (14)0.0384 (12)0.0446 (12)0.0006 (12)0.0027 (11)0.0016 (10)
C60.0359 (13)0.0353 (11)0.0384 (11)0.0033 (10)0.0015 (9)0.0017 (9)
C70.0428 (12)0.0451 (13)0.0366 (11)0.0043 (11)0.0039 (10)0.0020 (9)
C80.0609 (17)0.0559 (17)0.0475 (14)0.0164 (13)0.0008 (12)0.0081 (12)
C90.0428 (12)0.0585 (15)0.0318 (11)0.0053 (11)0.0023 (10)0.0024 (11)
C100.0342 (11)0.0581 (15)0.0465 (12)0.0069 (11)0.0015 (10)0.0145 (12)
C110.0410 (12)0.0518 (14)0.0450 (13)0.0097 (11)0.0029 (10)0.0137 (11)
N20.0351 (10)0.0594 (14)0.0391 (10)0.0019 (9)0.0016 (8)0.0063 (9)
C130.0421 (13)0.0651 (18)0.0346 (11)0.0115 (13)0.0017 (10)0.0013 (11)
C120.0553 (15)0.0525 (15)0.0309 (11)0.0059 (13)0.0031 (10)0.0011 (10)
C140.0373 (13)0.0566 (15)0.0429 (12)0.0058 (12)0.0018 (10)0.0064 (11)
C150.0490 (15)0.0706 (18)0.0429 (13)0.0124 (14)0.0001 (12)0.0012 (12)
C160.0561 (16)0.0716 (18)0.0509 (14)0.0103 (15)0.0084 (13)0.0096 (13)
C170.0550 (17)0.0714 (18)0.0424 (13)0.0195 (14)0.0036 (12)0.0032 (12)
C180.0675 (18)0.0613 (18)0.0544 (15)0.0117 (15)0.0071 (13)0.0167 (14)
C190.0552 (16)0.0484 (14)0.0611 (16)0.0029 (13)0.0023 (13)0.0008 (13)
C200.103 (3)0.114 (3)0.0430 (15)0.029 (2)0.0031 (16)0.0028 (16)
Geometric parameters (Å, º) top
S—O11.4217 (19)C15—C161.377 (3)
S—O21.431 (2)C16—C171.383 (4)
S—N21.662 (2)C17—C181.383 (4)
S—C141.753 (2)C17—C201.505 (4)
N1—C81.359 (3)C18—C191.383 (3)
N1—C11.361 (3)N1—H10.83 (3)
C1—C21.389 (3)C2—H20.93
C1—C61.415 (3)H3—C30.93
C2—C31.369 (4)C4—H40.93
C3—C41.401 (4)C5—H50.93
C4—C51.375 (3)C8—H80.93
C5—C61.401 (3)H9—C90.98
C6—C71.441 (3)C10—H100.93
C7—C81.353 (3)C11—H110.93
C7—C91.514 (3)C12—H120.93
C9—C101.492 (3)C13—H130.93
C9—C121.509 (3)C15—H150.93
C10—C111.316 (3)C16—H160.93
C11—N21.415 (3)C18—H180.93
N2—C131.410 (3)C19—H190.93
C13—C121.314 (3)C20—H20A0.96
C14—C151.379 (3)C20—H20B0.96
C14—C191.386 (3)C20—H20C0.96
O1—S—O2120.47 (12)C18—C17—C20121.6 (3)
O1—S—N2105.83 (11)C19—C18—C17121.7 (3)
O2—S—N2106.28 (11)C18—C19—C14118.8 (2)
O1—S—C14108.58 (11)C1—N1—H1128 (2)
O2—S—C14109.32 (12)C8—N1—H1123 (2)
N2—S—C14105.29 (10)N1—C8—H8124.6
C8—N1—C1109.2 (2)C7—C8—H8124.7
N1—C1—C2130.0 (2)C1—C2—H2121.1
N1—C1—C6107.5 (2)C3—C2—H2121.1
C2—C1—C6122.5 (2)C2—C3—H3119.5
C3—C2—C1117.8 (2)C4—C3—H3119.5
C2—C3—C4121.0 (2)C3—C4—H4119.2
C5—C4—C3121.5 (2)C5—C4—H4119.3
C4—C5—C6119.0 (2)C4—C5—H5120.5
C5—C6—C1118.2 (2)C6—C5—H5120.5
C5—C6—C7135.4 (2)C7—C9—H9107
C1—C6—C7106.32 (19)C12—C9—H9107
C8—C7—C6106.19 (19)C10—C9—H9107
C8—C7—C9124.7 (2)C9—C10—H10117.8
C6—C7—C9129.1 (2)C11—C10—H10117.8
C7—C8—N1110.7 (2)C10—C11—H11118.5
C10—C9—C12109.2 (2)N2—C11—H11118.6
C10—C9—C7113.21 (19)C9—C12—H12117.8
C12—C9—C7113.0 (2)C13—C12—H12117.8
C11—C10—C9124.4 (2)C12—C13—H13118.7
C10—C11—N2122.9 (2)N2—C13—H13118.6
C13—N2—C11116.4 (2)C14—C15—H15120.2
C13—N2—S118.87 (16)C16—C15—H15120.2
C11—N2—S117.57 (17)C15—C16—H16119.3
C12—C13—N2122.7 (2)C17—C16—H16119.3
C13—C12—C9124.4 (2)C17—C18—H18119.1
C15—C14—C19120.4 (2)C19—C18—H18119.1
C15—C14—S119.76 (18)C18—C19—H19120.5
C19—C14—S119.75 (19)C14—C19—H19120.6
C16—C15—C14119.6 (2)C17—C20—H20A109.5
C15—C16—C17121.4 (2)C17—C20—H20C109.4
C16—C17—C18118.0 (2)C17—C20—H20B109.5
C16—C17—C20120.4 (3)H20A—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.543.370 (3)149
N1—H1···Cgii0.83 (3)2.513.207 (3)143
Symmetry codes: (i) x1, y, z; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O2S
Mr350.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.9192 (9), 11.4344 (13), 19.168 (2)
V3)1735.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.47 × 0.45 × 0.42
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11335, 4115, 2830
Rint0.036
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.01
No. of reflections4115
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.24
Absolute structureFlack (1983), 1718 Friedel pairs
Absolute structure parameter0.07 (8)

Computer programs: SMART (Bruker 2001), SAINT (Bruker 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.543.370 (3)149
N1—H1···Cgii0.83 (3)2.513.207 (3)143
Symmetry codes: (i) x1, y, z; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors are pleased to thank the Fundação para a Ciência e a Tecnologia (FCT) (grant POCTI-SFA-3-686), FEDER (Portugal) and REEQ/ 630/QUI/2005 for financial support.

References

First citationBennasar, M.-L., Alvarez, M., Lavilla, R., Zulaica, E. & Bosch, J. (1990). J. Org. Chem. 55, 1156–1168.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationFanshawe, W. J., Bauers, V. J., Safir, S. R., Blickens, D. A. & Riggi, S. J. (1970). J. Med. Chem. 13, 993–995.  CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLavilla, R., Gotsens, T., Santano, M. C., Bosch, J., Camins, A., Arnau, N., Escubedo, E., Camarasa, J. & Pallas, M. (1997). Bioorg. Chem. 25, 169–178.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds