organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­methyl­phen­yl)-2-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 March 2010; accepted 8 March 2010; online 13 March 2010)

In the title compound, C16H17NO, the two aromatic rings are almost coplanar, making a dihedral angle of 1.9 (2)°. The amide group makes dihedral angles of 48.0 (3) and 48.6 (3)° with the 2-methyl­phenyl and the 2,5-dimethyl­phenyl rings, respectively. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the a axis of the crystal.

Related literature

For related structures, see Gowda, Foro et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.]); Gowda, Tokarčík et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Orthorhombic, P 21 21 21

  • a = 4.90104 (10) Å

  • b = 5.85657 (16) Å

  • c = 45.8291 (12) Å

  • V = 1315.45 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.54 × 0.35 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.957, Tmax = 0.990

  • 22131 measured reflections

  • 1414 independent reflections

  • 1338 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.097

  • S = 1.20

  • 1414 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.05 2.899 (3) 172
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our efforts to explore the effect of the substituents on the structures of benzanilides (Gowda, Foro et al., 2008a,b; Gowda, Tokarčík et al., 2009), in the present work, the structure of 2-methyl-N-(2,5-dimethylphenyl)benzamide (I) has been determined.

In the structure of (I) (Fig. 1), the N—H and C=O groups are in antiperiplanar conformation. This conformation is similar to those already observed, e. g. in 2-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008a), 2-methyl-N-(2,6-dimethylphenyl)- benzamide (III) (Gowda, Foro et al., 2008b) and in 2-methyl-N-(2,4-dimethylphenyl)benzamide (IV) (Gowda, Tokarčík et al., 2009). Further in (I), the conformation of the C=O group to the methyl substituent in the 2-methylphenyl ring is syn. This conformation is similar to those observed in (II) and (IV). The bond parameters in (I) are similar to those in (II), (III) and (IV) and other benzanilides (Gowda, Foro et al., 2008a,b; Gowda, Tokarčík et al., 2009).

The two aromatic rings are almost coplanar, with the dihedral angle of 1.9 (2)°. The amido group makes dihedral angles of 48.0 (3)° and 48.6 (3)° with the 2-methylphenyl and the 2,5-dimethylphenyl rings, respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains running along the a-axis of the crystal (Fig. 2).

Related literature top

For related structures, see Gowda, Foro et al. (2008a,b); Gowda, Tokarčík et al. (2009)

Experimental top

The title compound was prepared according to the method described by Gowda, Foro et al. (2008b). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Block-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å and N–H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl). The C16 methyl group exhibits orientational disorder in the positions of H atoms. In the last cycles of refinement, all H atoms were treated as riding on their parent atoms.

The two sets of methyl hydrogen atoms were refined with occupancies 0.74 (4) and 0.26 (4). In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) x + 1, y, z].
N-(2,5-Dimethylphenyl)-2-methylbenzamide top
Crystal data top
C16H17NOF(000) = 512
Mr = 239.31Dx = 1.208 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11414 reflections
a = 4.90104 (10) Åθ = 1.8–29.5°
b = 5.85657 (16) ŵ = 0.08 mm1
c = 45.8291 (12) ÅT = 295 K
V = 1315.45 (6) Å3Block, colourless
Z = 40.54 × 0.35 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1414 independent reflections
Graphite monochromator1338 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.037
ω scansθmax = 25°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 55
Tmin = 0.957, Tmax = 0.990k = 66
22131 measured reflectionsl = 5454
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0248P)2 + 0.5849P]
where P = (Fo2 + 2Fc2)/3
1414 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H17NOV = 1315.45 (6) Å3
Mr = 239.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.90104 (10) ŵ = 0.08 mm1
b = 5.85657 (16) ÅT = 295 K
c = 45.8291 (12) Å0.54 × 0.35 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1414 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1338 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.990Rint = 0.037
22131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.20Δρmax = 0.12 e Å3
1414 reflectionsΔρmin = 0.13 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.1938 (4)0.2752 (5)0.11488 (4)0.0571 (7)
N10.6250 (4)0.2075 (4)0.12991 (4)0.0354 (5)
H1N0.79450.21320.12510.043*
C10.4388 (5)0.2701 (5)0.10975 (5)0.0345 (6)
C20.5509 (5)0.3297 (5)0.08026 (5)0.0340 (6)
C30.4651 (6)0.5263 (5)0.06577 (6)0.0436 (7)
C40.5758 (7)0.5680 (6)0.03829 (6)0.0580 (9)
H40.52410.69890.02820.070*
C50.7593 (7)0.4208 (7)0.02570 (6)0.0644 (10)
H50.82940.45320.00730.077*
C60.8400 (7)0.2271 (7)0.03994 (6)0.0600 (9)
H60.96270.12670.03130.072*
C70.7366 (6)0.1831 (5)0.06728 (6)0.0446 (7)
H70.79240.05280.07720.054*
C80.5574 (5)0.1322 (4)0.15873 (5)0.0323 (6)
C90.6678 (6)0.0703 (5)0.16930 (6)0.0382 (6)
C100.5923 (6)0.1364 (5)0.19709 (6)0.0484 (8)
H100.66600.26960.20480.058*
C110.4121 (6)0.0122 (5)0.21371 (6)0.0488 (8)
H110.36310.06440.23210.059*
C120.3027 (6)0.1906 (5)0.20322 (5)0.0399 (7)
C130.3794 (5)0.2610 (5)0.17554 (5)0.0365 (6)
H130.31030.39690.16810.044*
C140.2646 (7)0.6906 (6)0.07875 (8)0.0633 (9)
H14A0.25760.82640.06700.095*
H14B0.32060.72940.09820.095*
H14C0.08720.62130.07930.095*
C150.8619 (6)0.2117 (5)0.15136 (6)0.0527 (8)
H15A1.03490.13540.15020.079*
H15B0.78880.23160.13210.079*
H15C0.88570.35830.16040.079*
C160.1035 (7)0.3287 (6)0.22091 (6)0.0566 (9)
H16A0.11990.28880.24120.068*0.74
H16B0.07860.29710.21440.068*0.74
H16C0.14200.48830.21850.068*0.74
H16D0.00250.42760.20820.068*0.26
H16E0.20070.41880.23500.068*0.26
H16F0.02010.22790.23090.068*0.26
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (10)0.0968 (18)0.0502 (11)0.0001 (13)0.0046 (9)0.0132 (13)
N10.0211 (10)0.0470 (13)0.0382 (11)0.0021 (11)0.0061 (9)0.0045 (11)
C10.0267 (13)0.0385 (15)0.0382 (14)0.0019 (13)0.0028 (11)0.0007 (13)
C20.0242 (12)0.0429 (15)0.0349 (13)0.0036 (13)0.0003 (11)0.0024 (12)
C30.0354 (15)0.0501 (17)0.0454 (16)0.0044 (15)0.0066 (13)0.0029 (14)
C40.058 (2)0.068 (2)0.0477 (17)0.005 (2)0.0123 (17)0.0192 (17)
C50.059 (2)0.100 (3)0.0339 (15)0.011 (2)0.0050 (15)0.0039 (19)
C60.0532 (19)0.084 (2)0.0424 (16)0.005 (2)0.0094 (15)0.0104 (18)
C70.0376 (15)0.0532 (18)0.0431 (15)0.0033 (16)0.0023 (13)0.0010 (14)
C80.0271 (13)0.0359 (14)0.0340 (13)0.0028 (13)0.0029 (12)0.0016 (11)
C90.0315 (14)0.0402 (15)0.0429 (15)0.0003 (14)0.0006 (12)0.0004 (12)
C100.0488 (17)0.0452 (17)0.0511 (17)0.0070 (17)0.0016 (15)0.0145 (14)
C110.0489 (18)0.0584 (19)0.0392 (15)0.0001 (18)0.0067 (15)0.0120 (15)
C120.0337 (14)0.0497 (17)0.0363 (13)0.0020 (15)0.0046 (12)0.0020 (13)
C130.0331 (13)0.0369 (14)0.0395 (14)0.0044 (14)0.0022 (11)0.0016 (12)
C140.0526 (19)0.0535 (19)0.084 (2)0.0100 (19)0.0045 (18)0.0053 (19)
C150.0522 (18)0.0435 (17)0.0625 (18)0.0149 (18)0.0056 (15)0.0020 (15)
C160.0529 (19)0.072 (2)0.0449 (16)0.007 (2)0.0120 (15)0.0044 (16)
Geometric parameters (Å, º) top
O1—C11.224 (3)C10—C111.375 (4)
N1—C11.349 (3)C10—H100.9300
N1—C81.431 (3)C11—C121.389 (4)
N1—H1N0.8598C11—H110.9300
C1—C21.500 (3)C12—C131.386 (3)
C2—C71.386 (4)C12—C161.505 (4)
C2—C31.394 (4)C13—H130.9300
C3—C41.393 (4)C14—H14A0.9600
C3—C141.499 (4)C14—H14B0.9600
C4—C51.373 (5)C14—H14C0.9600
C4—H40.9300C15—H15A0.9600
C5—C61.367 (5)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.376 (4)C16—H16A0.9599
C6—H60.9300C16—H16B0.9598
C7—H70.9300C16—H16C0.9602
C8—C131.387 (3)C16—H16D0.9605
C8—C91.391 (4)C16—H16E0.9588
C9—C101.381 (4)C16—H16F0.9607
C9—C151.505 (4)
C1—N1—C8124.0 (2)C11—C12—C16121.6 (3)
C1—N1—H1N117.9C12—C13—C8121.2 (3)
C8—N1—H1N118.1C12—C13—H13119.4
O1—C1—N1122.6 (2)C8—C13—H13119.4
O1—C1—C2121.8 (2)C3—C14—H14A109.5
N1—C1—C2115.6 (2)C3—C14—H14B109.5
C7—C2—C3120.4 (3)H14A—C14—H14B109.5
C7—C2—C1118.9 (2)C3—C14—H14C109.5
C3—C2—C1120.7 (2)H14A—C14—H14C109.5
C4—C3—C2117.3 (3)H14B—C14—H14C109.5
C4—C3—C14120.1 (3)C9—C15—H15A109.5
C2—C3—C14122.6 (3)C9—C15—H15B109.5
C5—C4—C3121.7 (3)H15A—C15—H15B109.5
C5—C4—H4119.2C9—C15—H15C109.5
C3—C4—H4119.2H15A—C15—H15C109.5
C6—C5—C4120.7 (3)H15B—C15—H15C109.5
C6—C5—H5119.7C12—C16—H16A109.6
C4—C5—H5119.7C12—C16—H16B109.3
C5—C6—C7118.9 (3)H16A—C16—H16B109.5
C5—C6—H6120.5C12—C16—H16C109.4
C7—C6—H6120.5H16A—C16—H16C109.5
C6—C7—C2121.1 (3)H16B—C16—H16C109.5
C6—C7—H7119.4C12—C16—H16D109.3
C2—C7—H7119.4H16A—C16—H16D141.1
C13—C8—C9121.0 (2)H16B—C16—H16D56.4
C13—C8—N1119.4 (2)H16C—C16—H16D56.1
C9—C8—N1119.6 (2)C12—C16—H16E109.6
C10—C9—C8117.1 (3)H16A—C16—H16E56.2
C10—C9—C15121.2 (3)H16B—C16—H16E141.1
C8—C9—C15121.6 (2)H16C—C16—H16E56.3
C11—C10—C9122.3 (3)H16D—C16—H16E109.4
C11—C10—H10118.8C12—C16—H16F109.5
C9—C10—H10118.8H16A—C16—H16F56.3
C10—C11—C12120.6 (3)H16B—C16—H16F56.2
C10—C11—H11119.7H16C—C16—H16F141.1
C12—C11—H11119.7H16D—C16—H16F109.5
C13—C12—C11117.8 (3)H16E—C16—H16F109.5
C13—C12—C16120.6 (3)
C8—N1—C1—O12.7 (5)C1—C2—C7—C6178.3 (3)
C8—N1—C1—C2176.3 (2)C1—N1—C8—C1349.7 (4)
O1—C1—C2—C7130.9 (3)C1—N1—C8—C9129.3 (3)
N1—C1—C2—C748.1 (3)C13—C8—C9—C100.0 (4)
O1—C1—C2—C347.5 (4)N1—C8—C9—C10179.1 (3)
N1—C1—C2—C3133.5 (3)C13—C8—C9—C15179.8 (3)
C7—C2—C3—C40.7 (4)N1—C8—C9—C151.1 (4)
C1—C2—C3—C4179.1 (3)C8—C9—C10—C111.3 (4)
C7—C2—C3—C14180.0 (3)C15—C9—C10—C11178.9 (3)
C1—C2—C3—C141.5 (4)C9—C10—C11—C121.6 (5)
C2—C3—C4—C50.8 (4)C10—C11—C12—C130.6 (4)
C14—C3—C4—C5179.8 (3)C10—C11—C12—C16179.5 (3)
C3—C4—C5—C60.1 (5)C11—C12—C13—C80.6 (4)
C4—C5—C6—C70.7 (5)C16—C12—C13—C8178.3 (2)
C5—C6—C7—C20.9 (5)C9—C8—C13—C120.9 (4)
C3—C2—C7—C60.2 (4)N1—C8—C13—C12178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.052.899 (3)172
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)4.90104 (10), 5.85657 (16), 45.8291 (12)
V3)1315.45 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.35 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.957, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
22131, 1414, 1338
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.20
No. of reflections1414
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.052.899 (3)171.9
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds