supplementary materials


dn2547 scheme

Acta Cryst. (2010). E66, m428    [ doi:10.1107/S1600536810009815 ]

(meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)copper(II) bis[O,O'-bis(4-methylphenyl) dithiophosphate]

L.-X. He, L.-K. Zou, B. Xie, Y.-G. Xiang and J.-S. Feng

Abstract top

The title compound, [Cu(C16H32N4)](C14H14O2PS2)2 or [Cu(trans[14]dien)][S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, was obtained by the reaction of [Cu(trans[14]dien)](ClO4)2 and [(C2H5)2NH]2 [S2P(OC6H4Me-4)2]2. The CuII atom lies on a centre of inversion and possesses a relatively undistorted square-planar coordination arrangement with four N atoms of the macrocyclic tetramine trans[14]dien [Cu-N = 1.9716 (19) and 2.0075 (19) Å]. The two uncoordinated [(4-MeC6H4O)2PS2]- groups act as counter-ions to balance the charge and interact with the [Cu(trans[14]dien)]2+ complex cation through N-H...S hydrogen bonds.

Comment top

The complexes of copper(I) and copper(II) with O,O' -dialkyldithiophosphate ligands (DDP), have been explored extensively in the past decades because of their potential use as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides (Drew et al., 1987;Liu et al., 1995; Liaw et al., 2005). The reactions between copper(II) and DDP rarely give stable copper(II) complexes, because the DDP ligands act as a reducing agent to form copper(I) complexs. However, the copper(II) can be stabilized by the formation of adducts with tetradentate nitrogen-donor ligands, e.g. macrocyclic tetramine, when reacting with DDP. We report here the structure of a copper(II) adducts, ([Cu(trans[14]dien)][S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14- hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

In the complex cation [Cu(trans[14]dien)]2+, the CuII atom which lies on an inversion centre, is coordinated by four N atoms of the macrocyclic tetramine trans[14]dien exhibiting a relatively undistorted square-planar geometry (Fig.1). The two uncoordinated O,O'-di(4-methylphenyl) dithiophosphates only act as counter-ions to balance the charge and interact with the complex cation through N—H···S hydrogen bonds (Table 1). Similar structure is seen in the analogous adduct, ([Ni(trans[14]dien)] [S2P(OC6H4Me-4)2]2 (Xie et al., 2009). All the bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).

Related literature top

For general background to the potential uses of copper(I) and copper(II) complexes with O,O'-dialkyldithiophosphate ligands, see: Drew et al. (1987); Liu et al., (1995); Liaw et al. (2005). For a related structure, see: Xie et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4, 11-diene nickel(II) diperchlorate(1 mmol, 0.543 g) was added to a solution of diethylammonium O,O'-di(4-methylphenyl)dithiophosphate (2 mmol, 0.767 g) in 60 ml methanol. The mixture was refluxed for 6 h at 70°C and then filtered. The filtrate was kept at room temperature and purple block crystals suitable for X-ray diffraction studies were obtained after one week.

Refinement top

H atoms on C were fixed geometrically and treated as riding, with C—H = 0.97 Å (methylene), 0.96Å (methyl) or 0.93Å (aromatic) and Uiso(H) = 1.2Ueq(C,methylene and aromatic) or Uiso(H) = 1.5Ueq(C,methyl). The H atoms on N were determined with difference Fourier syntheses and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitary radii. Hydrogen-bonds are shown as dashed lines.[Symmetry code: (i) -x + 1, -y + 2, -z + 1].
(meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-\ 4,11-diene)copper(II) bis[O,O'-bis(4-methylphenyl) dithiophosphate] top
Crystal data top
[Cu(C16H32N4)](C14H14O2PS2)2Z = 1
Mr = 962.68F(000) = 507
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1043 (9) ÅCell parameters from 2875 reflections
b = 10.2120 (11) Åθ = 2.6–26.6°
c = 15.8435 (17) ŵ = 0.73 mm1
α = 82.456 (2)°T = 273 K
β = 79.623 (2)°Block, purple
γ = 70.797 (2)°0.18 × 0.13 × 0.08 mm
V = 1214.3 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4266 independent reflections
Radiation source: fine-focus sealed tube3527 reflections with I > 2σ(I)
graphiteRint = 0.015
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.862, Tmax = 0.924k = 1212
6424 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4609P]
where P = (Fo2 + 2Fc2)/3
4266 reflections(Δ/σ)max = 0.002
273 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Cu(C16H32N4)](C14H14O2PS2)2γ = 70.797 (2)°
Mr = 962.68V = 1214.3 (2) Å3
Triclinic, P1Z = 1
a = 8.1043 (9) ÅMo Kα radiation
b = 10.2120 (11) ŵ = 0.73 mm1
c = 15.8435 (17) ÅT = 273 K
α = 82.456 (2)°0.18 × 0.13 × 0.08 mm
β = 79.623 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4266 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3527 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.924Rint = 0.015
6424 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.27 e Å3
S = 1.03Δρmin = 0.23 e Å3
4266 reflectionsAbsolute structure: ?
273 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.50000.04864 (14)
N10.3721 (2)0.97265 (18)0.41247 (12)0.0433 (4)
N20.3604 (2)1.20195 (18)0.48345 (13)0.0455 (5)
H10.42881.22610.44080.055*
C150.2619 (3)1.1075 (2)0.37755 (16)0.0504 (6)
H15A0.15981.09660.35890.060*
H15B0.32911.14350.32850.060*
C160.2037 (3)1.2058 (2)0.44768 (17)0.0537 (6)
H16A0.14641.29940.42460.064*
H16B0.12021.17810.49240.064*
C170.3685 (3)0.8572 (2)0.39127 (15)0.0457 (5)
C180.2533 (4)0.8444 (3)0.3313 (2)0.0770 (9)
H18A0.16570.93270.32190.116*
H18B0.19610.77660.35590.116*
H18C0.32400.81570.27740.116*
C190.4815 (3)0.7214 (2)0.42779 (17)0.0520 (6)
H19A0.49400.65120.38930.062*
H19B0.41720.69730.48220.062*
C200.6663 (3)0.7096 (2)0.44375 (16)0.0479 (6)
C210.7585 (4)0.5565 (2)0.4696 (2)0.0673 (8)
H21A0.87720.54480.47780.101*
H21B0.76100.50040.42500.101*
H21C0.69520.52820.52220.101*
C220.7720 (3)0.7578 (3)0.36425 (18)0.0627 (7)
H22A0.72050.85600.35180.094*
H22B0.77120.70950.31630.094*
H22C0.89150.73840.37410.094*
S10.49170 (8)0.58786 (7)0.69163 (5)0.05677 (18)
S20.20902 (8)0.88776 (7)0.62430 (5)0.05820 (19)
P10.26451 (8)0.73303 (6)0.71235 (4)0.04638 (17)
O10.2353 (2)0.78874 (18)0.80671 (11)0.0551 (4)
O20.0998 (2)0.67359 (18)0.72844 (12)0.0593 (5)
C10.3506 (3)0.8508 (3)0.82839 (15)0.0527 (6)
C20.3047 (4)0.9926 (3)0.82335 (18)0.0678 (7)
H20.19981.04740.80400.081*
C30.4174 (6)1.0532 (4)0.8476 (2)0.0854 (10)
H30.38611.14970.84450.102*
C40.5727 (5)0.9756 (4)0.8758 (2)0.0829 (10)
C50.6147 (5)0.8334 (4)0.8803 (2)0.0824 (9)
H50.72000.77840.89910.099*
C60.5046 (4)0.7706 (3)0.85759 (18)0.0679 (7)
H60.53440.67410.86200.082*
C70.6929 (7)1.0447 (5)0.9027 (3)0.1315 (18)
H7A0.64681.14370.89110.197*
H7B0.80911.01100.87090.197*
H7C0.69851.02320.96320.197*
C80.0709 (3)0.5670 (2)0.78801 (16)0.0500 (6)
C90.0702 (3)0.5272 (3)0.78031 (17)0.0571 (6)
H90.13700.56820.73630.069*
C100.1141 (4)0.4258 (3)0.83797 (19)0.0654 (7)
H100.21010.39890.83190.078*
C110.0189 (4)0.3637 (3)0.90417 (19)0.0637 (7)
C120.1238 (4)0.4049 (3)0.9097 (2)0.0735 (8)
H120.19120.36360.95350.088*
C130.1709 (4)0.5060 (3)0.85227 (19)0.0664 (8)
H130.26830.53190.85730.080*
C140.0684 (5)0.2542 (4)0.9688 (2)0.0930 (11)
H14A0.01840.16490.94560.140*
H14B0.19460.27690.98030.140*
H14C0.02340.25151.02120.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0435 (2)0.0334 (2)0.0719 (3)0.00251 (17)0.0267 (2)0.01418 (18)
N10.0372 (10)0.0391 (10)0.0572 (12)0.0120 (8)0.0136 (8)0.0074 (9)
N20.0381 (10)0.0374 (10)0.0615 (12)0.0095 (8)0.0103 (9)0.0079 (9)
C150.0434 (13)0.0466 (13)0.0644 (16)0.0120 (11)0.0225 (11)0.0016 (11)
C160.0428 (13)0.0430 (13)0.0735 (17)0.0054 (11)0.0197 (12)0.0040 (12)
C170.0364 (12)0.0483 (13)0.0563 (14)0.0154 (10)0.0050 (10)0.0147 (11)
C180.0620 (17)0.076 (2)0.104 (2)0.0157 (15)0.0330 (17)0.0351 (18)
C190.0513 (14)0.0393 (13)0.0718 (16)0.0188 (11)0.0079 (12)0.0164 (11)
C200.0424 (12)0.0353 (12)0.0661 (15)0.0086 (10)0.0088 (11)0.0127 (11)
C210.0658 (17)0.0361 (13)0.096 (2)0.0034 (12)0.0184 (15)0.0155 (13)
C220.0513 (15)0.0569 (16)0.0782 (19)0.0167 (13)0.0024 (13)0.0166 (14)
S10.0490 (4)0.0516 (4)0.0687 (4)0.0070 (3)0.0151 (3)0.0149 (3)
S20.0438 (3)0.0557 (4)0.0707 (4)0.0152 (3)0.0071 (3)0.0078 (3)
P10.0383 (3)0.0466 (3)0.0570 (4)0.0161 (3)0.0082 (3)0.0049 (3)
O10.0499 (10)0.0603 (10)0.0573 (10)0.0226 (8)0.0021 (8)0.0119 (8)
O20.0500 (10)0.0637 (11)0.0735 (12)0.0307 (9)0.0224 (9)0.0144 (9)
C10.0565 (15)0.0581 (15)0.0452 (14)0.0204 (12)0.0002 (11)0.0142 (11)
C20.080 (2)0.0573 (17)0.0662 (18)0.0202 (15)0.0092 (15)0.0124 (14)
C30.130 (3)0.066 (2)0.075 (2)0.047 (2)0.012 (2)0.0162 (16)
C40.110 (3)0.101 (3)0.0615 (19)0.057 (2)0.0210 (18)0.0138 (17)
C50.087 (2)0.102 (3)0.069 (2)0.031 (2)0.0292 (17)0.0147 (18)
C60.0755 (19)0.0644 (17)0.0664 (18)0.0162 (15)0.0215 (15)0.0134 (14)
C70.183 (5)0.171 (4)0.100 (3)0.118 (4)0.049 (3)0.016 (3)
C80.0468 (13)0.0470 (13)0.0595 (15)0.0190 (11)0.0076 (11)0.0040 (11)
C90.0477 (14)0.0660 (17)0.0648 (16)0.0268 (13)0.0121 (12)0.0016 (13)
C100.0578 (16)0.0706 (18)0.079 (2)0.0379 (14)0.0041 (14)0.0082 (15)
C110.0751 (19)0.0575 (16)0.0657 (18)0.0340 (15)0.0027 (15)0.0052 (13)
C120.088 (2)0.0710 (19)0.0742 (19)0.0385 (17)0.0310 (17)0.0119 (15)
C130.0683 (17)0.0664 (17)0.0800 (19)0.0395 (15)0.0285 (15)0.0128 (15)
C140.122 (3)0.087 (2)0.084 (2)0.061 (2)0.006 (2)0.0100 (19)
Geometric parameters (Å, °) top
Cu1—N1i1.9714 (18)P1—O21.6075 (16)
Cu1—N11.9714 (18)P1—O11.6193 (18)
Cu1—N2i2.0079 (18)O1—C11.398 (3)
Cu1—N22.0080 (17)O2—C81.396 (3)
N1—C171.278 (3)C1—C21.367 (4)
N1—C151.473 (3)C1—C61.371 (4)
N2—C161.468 (3)C2—C31.388 (4)
N2—C20i1.499 (3)C2—H20.9300
N2—H10.8576C3—C41.366 (5)
C15—C161.502 (3)C3—H30.9300
C15—H15A0.9700C4—C51.373 (5)
C15—H15B0.9700C4—C71.519 (4)
C16—H16A0.9700C5—C61.376 (4)
C16—H16B0.9700C5—H50.9300
C17—C181.491 (3)C6—H60.9300
C17—C191.497 (3)C7—H7A0.9600
C18—H18A0.9600C7—H7B0.9600
C18—H18B0.9600C7—H7C0.9600
C18—H18C0.9600C8—C91.363 (3)
C19—C201.527 (3)C8—C131.371 (4)
C19—H19A0.9700C9—C101.382 (4)
C19—H19B0.9700C9—H90.9300
C20—N2i1.499 (3)C10—C111.376 (4)
C20—C221.513 (4)C10—H100.9300
C20—C211.531 (3)C11—C121.375 (4)
C21—H21A0.9600C11—C141.518 (4)
C21—H21B0.9600C12—C131.389 (4)
C21—H21C0.9600C12—H120.9300
C22—H22A0.9600C13—H130.9300
C22—H22B0.9600C14—H14A0.9600
C22—H22C0.9600C14—H14B0.9600
S1—P11.9519 (9)C14—H14C0.9600
S2—P11.9556 (9)
N1i—Cu1—N1180.000 (1)H22A—C22—H22C109.5
N1i—Cu1—N2i85.26 (7)H22B—C22—H22C109.5
N1—Cu1—N2i94.74 (7)O2—P1—O197.09 (9)
N1i—Cu1—N294.74 (7)O2—P1—S1112.84 (7)
N1—Cu1—N285.26 (7)O1—P1—S1110.67 (7)
N2i—Cu1—N2180.00 (12)O2—P1—S2105.49 (7)
C17—N1—C15121.97 (19)O1—P1—S2111.15 (7)
C17—N1—Cu1127.29 (16)S1—P1—S2117.61 (4)
C15—N1—Cu1110.51 (13)C1—O1—P1120.99 (14)
C16—N2—C20i117.81 (18)C8—O2—P1128.25 (15)
C16—N2—Cu1105.96 (13)C2—C1—C6120.3 (3)
C20i—N2—Cu1117.25 (14)C2—C1—O1119.2 (2)
C16—N2—H1105.2C6—C1—O1120.4 (2)
C20i—N2—H1109.6C1—C2—C3118.8 (3)
Cu1—N2—H198.8C1—C2—H2120.6
N1—C15—C16107.80 (19)C3—C2—H2120.6
N1—C15—H15A110.1C4—C3—C2122.1 (3)
C16—C15—H15A110.1C4—C3—H3119.0
N1—C15—H15B110.1C2—C3—H3119.0
C16—C15—H15B110.1C3—C4—C5117.7 (3)
H15A—C15—H15B108.5C3—C4—C7121.0 (4)
N2—C16—C15108.29 (19)C5—C4—C7121.3 (4)
N2—C16—H16A110.0C4—C5—C6121.5 (3)
C15—C16—H16A110.0C4—C5—H5119.3
N2—C16—H16B110.0C6—C5—H5119.3
C15—C16—H16B110.0C1—C6—C5119.7 (3)
H16A—C16—H16B108.4C1—C6—H6120.2
N1—C17—C18124.4 (2)C5—C6—H6120.2
N1—C17—C19121.0 (2)C4—C7—H7A109.5
C18—C17—C19114.6 (2)C4—C7—H7B109.5
C17—C18—H18A109.5H7A—C7—H7B109.5
C17—C18—H18B109.5C4—C7—H7C109.5
H18A—C18—H18B109.5H7A—C7—H7C109.5
C17—C18—H18C109.5H7B—C7—H7C109.5
H18A—C18—H18C109.5C9—C8—C13120.3 (2)
H18B—C18—H18C109.5C9—C8—O2115.3 (2)
C17—C19—C20119.01 (19)C13—C8—O2124.3 (2)
C17—C19—H19A107.6C8—C9—C10120.0 (3)
C20—C19—H19A107.6C8—C9—H9120.0
C17—C19—H19B107.6C10—C9—H9120.0
C20—C19—H19B107.6C11—C10—C9121.5 (3)
H19A—C19—H19B107.0C11—C10—H10119.3
N2i—C20—C22111.23 (19)C9—C10—H10119.3
N2i—C20—C19105.85 (18)C12—C11—C10117.2 (3)
C22—C20—C19111.6 (2)C12—C11—C14121.0 (3)
N2i—C20—C21110.8 (2)C10—C11—C14121.8 (3)
C22—C20—C21109.8 (2)C11—C12—C13122.3 (3)
C19—C20—C21107.38 (19)C11—C12—H12118.9
C20—C21—H21A109.5C13—C12—H12118.9
C20—C21—H21B109.5C8—C13—C12118.7 (3)
H21A—C21—H21B109.5C8—C13—H13120.6
C20—C21—H21C109.5C12—C13—H13120.6
H21A—C21—H21C109.5C11—C14—H14A109.5
H21B—C21—H21C109.5C11—C14—H14B109.5
C20—C22—H22A109.5H14A—C14—H14B109.5
C20—C22—H22B109.5C11—C14—H14C109.5
H22A—C22—H22B109.5H14A—C14—H14C109.5
C20—C22—H22C109.5H14B—C14—H14C109.5
C17—N1—C15—C16143.9 (2)C1—C2—C3—C40.3 (5)
C20i—N2—C16—C15178.75 (19)C2—C3—C4—C50.5 (5)
N1—C15—C16—N250.8 (3)C2—C3—C4—C7179.5 (3)
C15—N1—C17—C181.0 (4)C3—C4—C5—C60.2 (5)
C15—N1—C17—C19179.9 (2)C7—C4—C5—C6178.7 (3)
N1—C17—C19—C2036.3 (3)C2—C1—C6—C51.2 (4)
C18—C17—C19—C20144.7 (2)O1—C1—C6—C5178.7 (3)
C17—C19—C20—N2i68.8 (3)C4—C5—C6—C11.1 (5)
C17—C19—C20—C2252.3 (3)P1—O2—C8—C9172.40 (19)
C17—C19—C20—C21172.8 (2)P1—O2—C8—C139.3 (4)
O2—P1—O1—C1178.84 (18)C13—C8—C9—C100.6 (4)
S1—P1—O1—C161.14 (19)O2—C8—C9—C10177.8 (2)
S2—P1—O1—C171.48 (18)C8—C9—C10—C110.5 (4)
O1—P1—O2—C862.5 (2)C9—C10—C11—C121.2 (4)
S1—P1—O2—C853.5 (2)C9—C10—C11—C14178.8 (3)
S2—P1—O2—C8176.78 (19)C10—C11—C12—C130.8 (5)
P1—O1—C1—C298.2 (2)C14—C11—C12—C13179.2 (3)
P1—O1—C1—C684.4 (3)C9—C8—C13—C121.0 (4)
C6—C1—C2—C30.5 (4)O2—C8—C13—C12177.3 (3)
O1—C1—C2—C3178.0 (2)C11—C12—C13—C80.2 (5)
Symmetry codes: (i) −x+1, −y+2, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H1···S1i0.862.773.559 (2)153
N2—H1···S2i0.862.833.477 (2)134
Symmetry codes: (i) −x+1, −y+2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H1···S1i0.862.773.559 (2)153
N2—H1···S2i0.862.833.477 (2)134
Symmetry codes: (i) −x+1, −y+2, −z+1.
Acknowledgements top

This work was supported by the Education Committee of Sichuan Province (No. 09ZA057), the Science and Technology Office of Zigong City (No. 08X01) and the Committee of Science and Technology of Sichuan Province (No. 2010GZ0130).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Drew, M. G. B., Forsyth, G. A., Hasan, M., Hobson, R. J. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1027–1033.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Liaw, B. J., Lobana, T. S., Lin, Y. W., Wang, J. C. & Liu, C. W. (2005). Inorg. Chem. 44, 9921–9929.

Liu, C. W., Stubbs, T., Staples, R. J. & Fackler, J. P. (1995). J. Am. Chem. Soc. 117, 9778–9779.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.