organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-amino­phen­yl)-3,4-di­phenyl­thio­phene-2,5-dicarboxamide aceto­nitrile solvate

aBaku State University, Z. Khalilov St 23, Baku AZ-1148, Azerbaijan, bChemistry Department, M. V. Lomonosov Moscow State University, Leninskie gory 1/3, Moscow 119991, Russian Federation, and cA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St 28, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 24 February 2010; accepted 8 March 2010; online 13 March 2010)

In the title solvate, C30H24N4O2S·CH3CN, the substituted thiophene possesses approximate Cs(m) intrinsic symmetry, with the mirror plane passing through the S atom and the mid-point of the (Ph)C—C(Ph) bond. Despite the main backbone of the mol­ecule being a long chain of conjugated bonds, it adopts a non-planar conformation due to the presence of various intra- and inter­molecular hydrogen bonds. The hydrogen bonds result in twist configurations for both the amido and amino­phenyl fragments relative to the central thio­phene ring. There are two intra­molecular Namine—H⋯O hydrogen bonds within the thio­phene-2,5-dicarboxamide mol­ecule that form seven-membered rings. In the crystal, the thio­phene-2,5-dicarboxamide mol­ecules form inversion dimers by four amide–amine N—H⋯N hydrogen bonds. The dimers are further linked into layers propagating in (100) both directly (via Namine—H⋯O hydrogen bonds) and through the acetonitrile solvate mol­ecules (via amine–cyano N—H⋯N and CMe—H⋯O inter­actions).

Related literature

For general background to aromatic diamide diamines, see: Picard et al. (2001[Picard, C., Arnaud, N. & Tisnes, P. (2001). Synthesis, pp. 1471-1478.]); Schneider & Yatsimirsky (2008[Schneider, H. J. & Yatsimirsky, A. K. (2008). Chem. Soc. Rev. 37, 263-277.]). For related compounds, see: Sessler et al. (2005a[Sessler, J. L., Katayev, E., Pantos, G. D., Scherbakov, P., Reshetova, M. D., Khrustalev, V. N., Lynch, V. M. & Ustynyuk, Y. A. (2005a). J. Am. Chem. Soc. 127, 11442-11446.],b[Sessler, J. L., Roznyatovskiy, V., Pantos, G. D., Borisova, N. E., Reshetova, M. D., Lynch, V. M., Khrustalev, V. N. & Ustynyuk, Y. A. (2005b). Org. Lett. 7, 5277-5280.]), Katayev et al. (2007[Katayev, E. A., Sessler, J. L., Khrustalev, V. N. & Ustynyuk, Y. A. (2007). J. Org. Chem. 72, 7244-7252.]); Askerov et al. (2010[Askerov, R. K., Roznyatovsky, V. V., Katayev, E. A., Maharramov, A. M. & Khrustalev, V. N. (2010). Acta Cryst. E66, o660-o661.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N4O2S·C2H3N

  • Mr = 545.65

  • Triclinic, [P \overline 1]

  • a = 9.0314 (9) Å

  • b = 11.5470 (11) Å

  • c = 13.0140 (12) Å

  • α = 93.206 (2)°

  • β = 92.504 (2)°

  • γ = 90.017 (2)°

  • V = 1353.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 120 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.972

  • 13964 measured reflections

  • 6491 independent reflections

  • 5153 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 1.01

  • 6491 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.91 2.43 3.124 (2) 134
N2—H2A⋯O1 0.91 2.12 2.841 (2) 135
N2—H2B⋯N5ii 0.91 2.43 3.322 (2) 165
N3—H3⋯N2i 0.90 2.50 3.125 (2) 127
N4—H4A⋯O2 0.91 2.08 2.860 (2) 143
N4—H4B⋯O2iii 0.91 2.35 3.108 (2) 142
C32—H32A⋯O1 0.98 2.55 3.245 (2) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic diamide diamines are useful precursors for the construction of larger molecules which are used in host-guest chemistry (Schneider &Yatsimirsky, 2008). Such diamines can bind neutral or anionic species using hydrogen bonds. We and others have reported several approaches for the synthesis of such type of diamines (Picard et al., 2001; Sessler et al., 2005a, 2005b; Katayev et al., 2007). In this work we present the synthesis and crystal structure of a diamine used by us recently to prepare anion selective receptors (Sessler et al., 2005a; Askerov et al., 2010).

The synthesis consists of the conversion of dicarboxylic acid into the corresponding chloride followed by coupling with 2-mercaptothiazoline (Fig. 1). The activated acid was transformed into (I) by the reaction with 1,2-phenylenediamine.

(I) crystallizes as a solvate with an acetonitrile molecule. The molecule possesses approximate Cs(m) intrinsic symmetry, with the mirror plane passing through the sulfur atom and the middle of the (Ph)C—C(Ph) bond (Fig. 2). Despite the main backbone of (I) being a long chain of conjugated bonds (CAr—N(H)—C(O)—CC—C(O)—N(H)—CAr), it adopts a non-planar conformation due to the presence of various intra- and intermolecular hydrogen bonding interactions (Table 1). These hydrogen bonds result in twist configurations for both the amido and aminophenyl fragments relative to the central thiophene ring. The dihedral angles between the O1C5—N1—H1 and O2 C24—N3—H3 amido planes and the S1—C1—C2—C3—C4 thiophene ring plane are 16.08 (8) and 19.30 (11)°, respectively, while that between the N2—C7—C8—C9—C10—C11—C6 and N4—C26—C27—C28—C29—C30—C25 aminophenyl planes and the S1—C1—C2—C3—C4 thiophene ring plane are 39.16 (5) and 33.43 (6)°, respectively. The dihedral angles between the planes of the C12—C13—C14—C15—C16—C17 and C18—C19—C20—C21—C22—C23 phenyl substituents and the S1—C1—C2—C3—C4 thiophene ring plane are 62.55 (6) and 74.62 (5)°, respectively.

There are two intramolecular Namine—H···O hydrogen bonds in (I) closing the O1—C5—N1—C6—C7—N2—H2A and O2—C24—N3—C25—C26—N4—H4A seven-membered rings (Table 1, Fig. 2). In the crystal, the molecules form centrosymmetrical dimers through four N1—H1···N4i and N3—H3···N2i hydrogen bonds (Table 1, Fig. 3). The dimers are further linked into layers parallel to (100) both directly (via N4—H4B···O2iii hydrogen bonds, Table 1) and through the solvate acetonitrile molecules (via N2—H2B···N5ii and C32—H32A···O1 hydrogen bonds, Table 1) (Fig. 4).

Related literature top

For general background to aromatic diamide diamines, see: Picard et al. (2001); Schneider & Yatsimirsky (2008). For related compounds, see: Sessler et al. (2005a,b), Katayev et al. (2007); Askerov et al. (2010).

Experimental top

2,5-Bis((2-thio-1,3-thiazolidine-3-yl)carbonyl)-3,4-diphenylthiophene (II). 3,4-Diphenylthiophene-2,5-dicarboxylic acid (9 g, 27.7 mmol) was suspended in 35 ml freshly distilled SOCl2 in the presence of several drops of DMF. The resulting mixture was heated at reflux for 1 hour. The excess SOCl2 was removed under reduced pressure and the residue was further dried at 373 K under high vacuum. The thiophene diacid chloride obtained in this way was dissolved in 130 ml dry THF and added drop-wise during a 2 hour period to a solution containing 1,3-thiazolidine-2-thione (6.6 g, 55.4 mmol) and triethylamine (20 ml) in 330 ml dry THF. During this process carried out under continuous stirring the reaction temperature was kept at 323 K. After the addition was complete the reaction mixture was maintained under the same conditions for an additional 2 hours and then for a further 16 h at room temperature with stirring. The reaction mixture was then filtered, and the resulting solid was washed with cold THF. The filtrate was reduced in volume to a dark paste using a rotary evaporator. This paste-like material was then taken up into 30 ml of ethyl acetate. After this mixing procedure, crude product was filtered off as a dark-yellow powder. Recrystallization from dichloroethane yielded 10.8 g (74%) of yellow crystals. M.p. = 527-529 K. Found: C, 54.73; H, 3.44; N, 5.32. Calcd for C24H18N2O2S5: C, 54.98; H, 3.23; N, 5.36. 1H NMR (400 MHz, CDCl3): \d = 2.72 (t, 4H), 4.21 (t, 4H), 7.05 (m, 4H), 7.22 (m. 6H). 13C NMR (100 MHz, CDCl3): \d = 29.61, 55.80, 127.90, 127.99, 129.60, 134.21, 136.08, 144.34, 164.16, 200.37. Mass spectrometry (ESI+): 548.9 [M+Na]+, 1074.3 [2M+Na]+, 1601.8 [3M+Na]+.

(II) (5.0 g, 9.45 mmol) was added to a solution of 1,2-diaminobenzene (3.1 g, 28.4 mmol) in 125 ml of dry methylene chloride. The resulting mixture was stirred at room temperature for 2 days. At this juncture, the desired product, compound I, was obtained via filtration in a yield of 78% (3.7 g). M.p. = 501-503 K. Found: C, 71.40; H, 4.77; N, 11.45. Calcd for C30H24N4O2S: C, 71.41; H, 4.79; N, 11.10. 1H NMR (400 MHz, DMSO-d6): δ = 4.50 (s, 4H), 6.53 (t, 2H), 6.68 (d, 2H), 6.90 (t, 2H), 7.02 (d, 2H), 7.17 (m, 4H), 7.25 (m, 6H), 8.76 (s, 2H). 13C NMR (100 MHz, DMSO-d6): δ = 127.48, 127.90, 133.71, 136.90, 138.13, 139.58, 139.37, 141.32, 145.59, 147.12, 153.39, 153.48, 171.99. Mass spectrometry (ESI+): 527.1 [M+Na]+, 1030.9 [2M+Na]+, 1535.8 [3M+Na]+. Crystals suitable for X-ray diffraction were obtained by slow evaporation from an acetonitrile solution.

Refinement top

The hydrogen atoms of the amino-groups as well as the solvate acetonitrile molecule were localized in the difference-Fourier map and included in the refinement with fixed positional (C–H = 0.98 Å) and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions with C–H = 0.95 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of the ligand I.
[Figure 2] Fig. 2. Molecular structure of I.CH3CN. Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. Centrosymmetrical dimers of I. Displacement ellipsoids are shown at the 50% probability level. Only H-atoms participating in the formation of the hydrogen bonds are presented. Dashed lines indicate the hydrogen bonds.
[Figure 4] Fig. 4. Crystal packing of dimers of I. Dashed lines indicate the hydrogen bonds.
N,N'-Bis(2-aminophenyl)-3,4-diphenylthiophene-2,5-dicarboxamide acetonitrile solvate top
Crystal data top
C30H24N4O2S·C2H3NZ = 2
Mr = 545.65F(000) = 572
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0314 (9) ÅCell parameters from 7103 reflections
b = 11.5470 (11) Åθ = 2.3–28.0°
c = 13.0140 (12) ŵ = 0.16 mm1
α = 93.206 (2)°T = 120 K
β = 92.504 (2)°Prism, yellow
γ = 90.017 (2)°0.24 × 0.21 × 0.18 mm
V = 1353.7 (2) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
6491 independent reflections
Radiation source: normal-focus sealed tube5153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.965, Tmax = 0.972k = 1515
13964 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.122H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 0.82P]
where P = (Fo2 + 2Fc2)/3
6491 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C30H24N4O2S·C2H3Nγ = 90.017 (2)°
Mr = 545.65V = 1353.7 (2) Å3
Triclinic, P1Z = 2
a = 9.0314 (9) ÅMo Kα radiation
b = 11.5470 (11) ŵ = 0.16 mm1
c = 13.0140 (12) ÅT = 120 K
α = 93.206 (2)°0.24 × 0.21 × 0.18 mm
β = 92.504 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
6491 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
5153 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.972Rint = 0.018
13964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
6491 reflectionsΔρmin = 0.26 e Å3
362 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32334 (4)0.62254 (3)0.58968 (3)0.02296 (11)
O10.24008 (14)0.49411 (10)0.75610 (9)0.0285 (3)
O20.35642 (14)0.83180 (10)0.48613 (9)0.0309 (3)
N10.23655 (15)0.31177 (11)0.68036 (10)0.0241 (3)
H10.24810.26620.62200.029*
N20.42197 (16)0.33682 (12)0.86449 (11)0.0276 (3)
H2A0.40230.41140.84880.033*
H2B0.47860.33420.92420.033*
N30.40740 (15)0.75501 (11)0.32722 (10)0.0239 (3)
H30.41540.69020.28580.029*
N40.62869 (16)0.91705 (12)0.41468 (11)0.0281 (3)
H4A0.57020.88940.46330.034*
H4B0.67920.98020.44160.034*
C10.26943 (17)0.47972 (13)0.57739 (12)0.0225 (3)
C20.25071 (17)0.43918 (13)0.47550 (12)0.0216 (3)
C30.28338 (17)0.52709 (13)0.40610 (12)0.0217 (3)
C40.32623 (17)0.63027 (14)0.45839 (12)0.0225 (3)
C50.24737 (17)0.42824 (14)0.67855 (12)0.0229 (3)
C60.20591 (18)0.25151 (13)0.77046 (12)0.0238 (3)
C70.29838 (18)0.26348 (14)0.86012 (12)0.0250 (3)
C80.2672 (2)0.19380 (15)0.94138 (13)0.0308 (4)
H80.32800.19961.00290.037*
C90.1493 (2)0.11687 (16)0.93351 (14)0.0346 (4)
H90.13060.07030.98950.042*
C100.0585 (2)0.10680 (16)0.84531 (15)0.0336 (4)
H100.02270.05410.84040.040*
C110.08769 (19)0.17493 (14)0.76388 (13)0.0283 (3)
H110.02570.16880.70290.034*
C120.19053 (17)0.32216 (13)0.44120 (12)0.0221 (3)
C130.04857 (18)0.29170 (14)0.46735 (13)0.0263 (3)
H130.01020.34640.50450.032*
C140.0081 (2)0.18195 (15)0.43950 (14)0.0314 (4)
H140.10440.16140.45890.038*
C150.0755 (2)0.10268 (15)0.38373 (14)0.0323 (4)
H150.03660.02760.36510.039*
C160.2158 (2)0.13241 (15)0.35487 (14)0.0306 (4)
H160.27240.07840.31540.037*
C170.27350 (19)0.24181 (14)0.38395 (13)0.0269 (3)
H170.37010.26190.36470.032*
C180.25880 (17)0.51370 (13)0.29169 (12)0.0225 (3)
C190.3573 (2)0.45298 (15)0.22964 (13)0.0282 (3)
H190.44230.41770.26000.034*
C200.3317 (2)0.44371 (16)0.12320 (14)0.0343 (4)
H200.39910.40150.08140.041*
C210.2092 (2)0.49542 (17)0.07780 (14)0.0360 (4)
H210.19220.48880.00510.043*
C220.1116 (2)0.55669 (18)0.13886 (15)0.0383 (4)
H220.02770.59280.10800.046*
C230.1357 (2)0.56590 (16)0.24561 (13)0.0307 (4)
H230.06790.60800.28710.037*
C240.36380 (17)0.74725 (13)0.42408 (12)0.0229 (3)
C250.43963 (18)0.86137 (13)0.28064 (12)0.0240 (3)
C260.54734 (18)0.93901 (14)0.32371 (13)0.0249 (3)
C270.5790 (2)1.03668 (15)0.26837 (14)0.0319 (4)
H270.64841.09270.29700.038*
C280.5105 (2)1.05222 (16)0.17287 (15)0.0363 (4)
H280.53521.11780.13600.044*
C290.4066 (2)0.97321 (16)0.13054 (14)0.0346 (4)
H290.36040.98390.06470.041*
C300.37053 (19)0.87819 (15)0.18545 (13)0.0282 (3)
H300.29790.82430.15760.034*
N50.3348 (2)0.71107 (17)0.94378 (15)0.0518 (5)
C310.2246 (3)0.71979 (17)0.89885 (16)0.0402 (5)
C320.0842 (3)0.7313 (2)0.8419 (2)0.0555 (6)
H32A0.07720.67230.78470.083*
H32B0.00270.72090.88780.083*
H32C0.07780.80870.81460.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0254 (2)0.02091 (19)0.02226 (19)0.00233 (14)0.00057 (14)0.00059 (14)
O10.0368 (7)0.0234 (6)0.0250 (6)0.0031 (5)0.0028 (5)0.0015 (4)
O20.0380 (7)0.0236 (6)0.0313 (6)0.0048 (5)0.0103 (5)0.0040 (5)
N10.0285 (7)0.0221 (6)0.0218 (6)0.0015 (5)0.0010 (5)0.0006 (5)
N20.0301 (7)0.0267 (7)0.0255 (7)0.0006 (6)0.0023 (6)0.0002 (5)
N30.0270 (7)0.0192 (6)0.0254 (7)0.0022 (5)0.0024 (5)0.0008 (5)
N40.0283 (7)0.0262 (7)0.0294 (7)0.0042 (6)0.0005 (6)0.0009 (6)
C10.0207 (7)0.0202 (7)0.0264 (8)0.0001 (6)0.0002 (6)0.0016 (6)
C20.0192 (7)0.0215 (7)0.0239 (7)0.0014 (6)0.0006 (6)0.0001 (6)
C30.0202 (7)0.0217 (7)0.0232 (7)0.0011 (6)0.0008 (6)0.0006 (6)
C40.0206 (7)0.0237 (7)0.0233 (7)0.0002 (6)0.0017 (6)0.0009 (6)
C50.0216 (7)0.0231 (7)0.0240 (7)0.0019 (6)0.0010 (6)0.0017 (6)
C60.0282 (8)0.0202 (7)0.0235 (7)0.0029 (6)0.0038 (6)0.0018 (6)
C70.0260 (8)0.0238 (8)0.0253 (8)0.0036 (6)0.0025 (6)0.0000 (6)
C80.0378 (10)0.0308 (9)0.0241 (8)0.0021 (7)0.0007 (7)0.0043 (7)
C90.0394 (10)0.0331 (9)0.0328 (9)0.0003 (8)0.0064 (8)0.0106 (7)
C100.0309 (9)0.0301 (9)0.0405 (10)0.0044 (7)0.0023 (8)0.0075 (7)
C110.0283 (8)0.0245 (8)0.0319 (9)0.0006 (6)0.0026 (7)0.0032 (6)
C120.0241 (8)0.0215 (7)0.0205 (7)0.0014 (6)0.0019 (6)0.0018 (6)
C130.0240 (8)0.0267 (8)0.0277 (8)0.0007 (6)0.0006 (6)0.0023 (6)
C140.0258 (8)0.0319 (9)0.0361 (9)0.0082 (7)0.0003 (7)0.0006 (7)
C150.0370 (10)0.0220 (8)0.0371 (9)0.0073 (7)0.0031 (7)0.0020 (7)
C160.0327 (9)0.0247 (8)0.0336 (9)0.0025 (7)0.0013 (7)0.0043 (7)
C170.0255 (8)0.0245 (8)0.0308 (8)0.0005 (6)0.0040 (6)0.0009 (6)
C180.0242 (8)0.0205 (7)0.0226 (7)0.0051 (6)0.0007 (6)0.0008 (6)
C190.0294 (9)0.0286 (8)0.0266 (8)0.0008 (7)0.0016 (6)0.0002 (6)
C200.0403 (10)0.0357 (9)0.0264 (9)0.0049 (8)0.0054 (7)0.0052 (7)
C210.0464 (11)0.0377 (10)0.0232 (8)0.0113 (8)0.0027 (7)0.0005 (7)
C220.0375 (10)0.0440 (11)0.0325 (9)0.0004 (8)0.0099 (8)0.0044 (8)
C230.0298 (9)0.0330 (9)0.0287 (9)0.0030 (7)0.0011 (7)0.0006 (7)
C240.0222 (7)0.0208 (7)0.0258 (8)0.0011 (6)0.0024 (6)0.0000 (6)
C250.0248 (8)0.0206 (7)0.0272 (8)0.0007 (6)0.0056 (6)0.0020 (6)
C260.0248 (8)0.0217 (7)0.0282 (8)0.0016 (6)0.0049 (6)0.0002 (6)
C270.0309 (9)0.0256 (8)0.0397 (10)0.0046 (7)0.0071 (7)0.0029 (7)
C280.0400 (10)0.0297 (9)0.0408 (10)0.0012 (8)0.0075 (8)0.0121 (8)
C290.0366 (10)0.0361 (10)0.0319 (9)0.0040 (8)0.0021 (7)0.0097 (7)
C300.0275 (8)0.0273 (8)0.0297 (8)0.0010 (7)0.0019 (7)0.0014 (7)
N50.0561 (12)0.0509 (11)0.0484 (11)0.0142 (9)0.0086 (9)0.0104 (9)
C310.0526 (13)0.0312 (10)0.0372 (10)0.0072 (9)0.0043 (9)0.0038 (8)
C320.0540 (14)0.0523 (14)0.0587 (15)0.0085 (11)0.0028 (11)0.0056 (11)
Geometric parameters (Å, º) top
S1—C11.7162 (16)C13—C141.390 (2)
S1—C41.7171 (16)C13—H130.9500
O1—C51.2334 (19)C14—C151.381 (3)
O2—C241.2354 (19)C14—H140.9500
N1—C51.350 (2)C15—C161.386 (3)
N1—C61.434 (2)C15—H150.9500
N1—H10.9092C16—C171.393 (2)
N2—C71.398 (2)C16—H160.9500
N2—H2A0.9120C17—H170.9500
N2—H2B0.9136C18—C191.391 (2)
N3—C241.345 (2)C18—C231.393 (2)
N3—C251.435 (2)C19—C201.392 (2)
N3—H30.9029C19—H190.9500
N4—C261.401 (2)C20—C211.383 (3)
N4—H4A0.9125C20—H200.9500
N4—H4B0.9060C21—C221.381 (3)
C1—C21.384 (2)C21—H210.9500
C1—C51.495 (2)C22—C231.395 (2)
C2—C31.435 (2)C22—H220.9500
C2—C121.494 (2)C23—H230.9500
C3—C41.385 (2)C25—C301.386 (2)
C3—C181.495 (2)C25—C261.400 (2)
C4—C241.490 (2)C26—C271.407 (2)
C6—C111.383 (2)C27—C281.385 (3)
C6—C71.405 (2)C27—H270.9500
C7—C81.402 (2)C28—C291.384 (3)
C8—C91.383 (3)C28—H280.9500
C8—H80.9500C29—C301.389 (2)
C9—C101.381 (3)C29—H290.9500
C9—H90.9500C30—H300.9500
C10—C111.389 (2)N5—C311.139 (3)
C10—H100.9500C31—C321.451 (3)
C11—H110.9500C32—H32A0.9800
C12—C131.391 (2)C32—H32B0.9800
C12—C171.396 (2)C32—H32C0.9800
C1—S1—C491.55 (8)C14—C15—C16120.17 (16)
C5—N1—C6124.09 (13)C14—C15—H15119.9
C5—N1—H1120.3C16—C15—H15119.9
C6—N1—H1115.6C15—C16—C17119.79 (16)
C7—N2—H2A114.9C15—C16—H16120.1
C7—N2—H2B113.7C17—C16—H16120.1
H2A—N2—H2B111.3C16—C17—C12120.48 (16)
C24—N3—C25124.93 (13)C16—C17—H17119.8
C24—N3—H3119.9C12—C17—H17119.8
C25—N3—H3115.2C19—C18—C23119.01 (15)
C26—N4—H4A112.0C19—C18—C3121.86 (15)
C26—N4—H4B112.6C23—C18—C3119.11 (14)
H4A—N4—H4B109.5C18—C19—C20120.21 (16)
C2—C1—C5134.26 (14)C18—C19—H19119.9
C2—C1—S1112.53 (12)C20—C19—H19119.9
C5—C1—S1113.16 (11)C21—C20—C19120.58 (17)
C1—C2—C3111.71 (14)C21—C20—H20119.7
C1—C2—C12124.44 (14)C19—C20—H20119.7
C3—C2—C12123.63 (14)C22—C21—C20119.51 (17)
C4—C3—C2111.76 (14)C22—C21—H21120.2
C4—C3—C18123.61 (14)C20—C21—H21120.2
C2—C3—C18124.32 (14)C21—C22—C23120.36 (18)
C3—C4—C24133.19 (14)C21—C22—H22119.8
C3—C4—S1112.44 (12)C23—C22—H22119.8
C24—C4—S1114.22 (11)C18—C23—C22120.32 (17)
O1—C5—N1123.27 (15)C18—C23—H23119.8
O1—C5—C1118.49 (14)C22—C23—H23119.8
N1—C5—C1118.25 (14)O2—C24—N3123.20 (15)
C11—C6—C7120.89 (15)O2—C24—C4118.76 (14)
C11—C6—N1117.59 (15)N3—C24—C4118.02 (14)
C7—C6—N1121.37 (15)C30—C25—C26121.14 (15)
N2—C7—C8121.83 (15)C30—C25—N3116.87 (14)
N2—C7—C6120.62 (15)C26—C25—N3121.66 (15)
C8—C7—C6117.42 (15)C25—C26—N4121.71 (15)
C9—C8—C7121.12 (16)C25—C26—C27117.49 (16)
C9—C8—H8119.4N4—C26—C27120.64 (15)
C7—C8—H8119.4C28—C27—C26120.95 (16)
C10—C9—C8120.84 (17)C28—C27—H27119.5
C10—C9—H9119.6C26—C27—H27119.5
C8—C9—H9119.6C29—C28—C27120.68 (17)
C9—C10—C11118.92 (17)C29—C28—H28119.7
C9—C10—H10120.5C27—C28—H28119.7
C11—C10—H10120.5C28—C29—C30119.16 (17)
C6—C11—C10120.80 (16)C28—C29—H29120.4
C6—C11—H11119.6C30—C29—H29120.4
C10—C11—H11119.6C25—C30—C29120.52 (16)
C13—C12—C17118.89 (15)C25—C30—H30119.7
C13—C12—C2119.39 (14)C29—C30—H30119.7
C17—C12—C2121.72 (14)N5—C31—C32179.8 (3)
C14—C13—C12120.54 (16)C31—C32—H32A109.5
C14—C13—H13119.7C31—C32—H32B109.5
C12—C13—H13119.7H32A—C32—H32B109.5
C15—C14—C13120.11 (16)C31—C32—H32C109.5
C15—C14—H14119.9H32A—C32—H32C109.5
C13—C14—H14119.9H32B—C32—H32C109.5
C4—S1—C1—C21.32 (13)C17—C12—C13—C141.8 (2)
C4—S1—C1—C5179.05 (12)C2—C12—C13—C14177.74 (15)
C5—C1—C2—C3177.89 (16)C12—C13—C14—C151.2 (3)
S1—C1—C2—C30.80 (17)C13—C14—C15—C160.3 (3)
C5—C1—C2—C123.2 (3)C14—C15—C16—C171.2 (3)
S1—C1—C2—C12173.88 (12)C15—C16—C17—C120.6 (3)
C1—C2—C3—C40.33 (19)C13—C12—C17—C160.9 (2)
C12—C2—C3—C4175.06 (14)C2—C12—C17—C16178.63 (15)
C1—C2—C3—C18173.50 (14)C4—C3—C18—C19107.51 (19)
C12—C2—C3—C181.2 (2)C2—C3—C18—C1979.4 (2)
C2—C3—C4—C24176.42 (16)C4—C3—C18—C2370.9 (2)
C18—C3—C4—C242.5 (3)C2—C3—C18—C23102.24 (19)
C2—C3—C4—S11.32 (17)C23—C18—C19—C200.7 (3)
C18—C3—C4—S1172.56 (12)C3—C18—C19—C20179.11 (15)
C1—S1—C4—C31.51 (13)C18—C19—C20—C210.6 (3)
C1—S1—C4—C24177.59 (12)C19—C20—C21—C220.0 (3)
C6—N1—C5—O14.2 (3)C20—C21—C22—C230.4 (3)
C6—N1—C5—C1175.83 (14)C19—C18—C23—C220.3 (3)
C2—C1—C5—O1163.05 (17)C3—C18—C23—C22178.76 (16)
S1—C1—C5—O114.02 (19)C21—C22—C23—C180.2 (3)
C2—C1—C5—N117.0 (3)C25—N3—C24—O25.1 (3)
S1—C1—C5—N1165.92 (12)C25—N3—C24—C4176.44 (14)
C5—N1—C6—C11125.82 (17)C3—C4—C24—O2158.95 (17)
C5—N1—C6—C758.5 (2)S1—C4—C24—O216.1 (2)
C11—C6—C7—N2176.85 (15)C3—C4—C24—N322.5 (3)
N1—C6—C7—N21.3 (2)S1—C4—C24—N3162.48 (12)
C11—C6—C7—C80.9 (2)C24—N3—C25—C30128.99 (17)
N1—C6—C7—C8174.68 (14)C24—N3—C25—C2657.6 (2)
N2—C7—C8—C9176.27 (16)C30—C25—C26—N4173.44 (15)
C6—C7—C8—C90.4 (3)N3—C25—C26—N40.3 (2)
C7—C8—C9—C100.3 (3)C30—C25—C26—C272.1 (2)
C8—C9—C10—C110.4 (3)N3—C25—C26—C27175.29 (15)
C7—C6—C11—C100.8 (3)C25—C26—C27—C282.8 (3)
N1—C6—C11—C10174.92 (15)N4—C26—C27—C28172.85 (16)
C9—C10—C11—C60.2 (3)C26—C27—C28—C291.5 (3)
C1—C2—C12—C1359.9 (2)C27—C28—C29—C300.5 (3)
C3—C2—C12—C13114.13 (18)C26—C25—C30—C290.2 (3)
C1—C2—C12—C17119.63 (18)N3—C25—C30—C29173.68 (15)
C3—C2—C12—C1766.3 (2)C28—C29—C30—C251.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.912.433.124 (2)134
N2—H2A···O10.912.122.841 (2)135
N2—H2B···N5ii0.912.433.322 (2)165
N3—H3···N2i0.902.503.125 (2)127
N4—H4A···O20.912.082.860 (2)143
N4—H4B···O2iii0.912.353.108 (2)142
C32—H32A···O10.982.553.245 (2)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC30H24N4O2S·C2H3N
Mr545.65
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.0314 (9), 11.5470 (11), 13.0140 (12)
α, β, γ (°)93.206 (2), 92.504 (2), 90.017 (2)
V3)1353.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.965, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
13964, 6491, 5153
Rint0.018
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.01
No. of reflections6491
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.26

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.912.433.124 (2)134
N2—H2A···O10.912.122.841 (2)135
N2—H2B···N5ii0.912.433.322 (2)165
N3—H3···N2i0.902.503.125 (2)127
N4—H4A···O20.912.082.860 (2)143
N4—H4B···O2iii0.912.353.108 (2)142
C32—H32A···O10.982.553.245 (2)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+1.
 

References

First citationAskerov, R. K., Roznyatovsky, V. V., Katayev, E. A., Maharramov, A. M. & Khrustalev, V. N. (2010). Acta Cryst. E66, o660–o661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKatayev, E. A., Sessler, J. L., Khrustalev, V. N. & Ustynyuk, Y. A. (2007). J. Org. Chem. 72, 7244–7252.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPicard, C., Arnaud, N. & Tisnes, P. (2001). Synthesis, pp. 1471–1478.  CrossRef Google Scholar
First citationSchneider, H. J. & Yatsimirsky, A. K. (2008). Chem. Soc. Rev. 37, 263–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSessler, J. L., Katayev, E., Pantos, G. D., Scherbakov, P., Reshetova, M. D., Khrustalev, V. N., Lynch, V. M. & Ustynyuk, Y. A. (2005a). J. Am. Chem. Soc. 127, 11442–11446.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSessler, J. L., Roznyatovskiy, V., Pantos, G. D., Borisova, N. E., Reshetova, M. D., Lynch, V. M., Khrustalev, V. N. & Ustynyuk, Y. A. (2005b). Org. Lett. 7, 5277–5280.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds