organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-3-methyl­sulfanyl-5-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 25 February 2010; accepted 8 March 2010; online 13 March 2010)

In the title compound, C21H15ClOS, the 4-chloro­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 21.50 (6)°. The dihedral angle between the 5-phenyl ring and the benzofuran plane is 29.39 (6)°. The crystal studied was an inversion twin with a 0.65 (7):0.35 (6) domain ratio.

Related literature

For the crystal structures of similar benzofuran derivatives, see: Choi, et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15ClOS

  • Mr = 350.84

  • Monoclinic, P 21

  • a = 10.921 (1) Å

  • b = 7.2225 (8) Å

  • c = 11.740 (1) Å

  • β = 115.132 (6)°

  • V = 838.35 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 173 K

  • 0.27 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.951

  • 7754 measured reflections

  • 3571 independent reflections

  • 3376 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.05

  • 3571 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1505 Friedel pairs

  • Flack parameter: 0.35 (6)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds containing a benzofuran moiety show diverse pharmacological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), and antimicrobial (Khan et al., 2005) properties. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes as the monoclinic space group P21. The crystal studied was an inversion twin with a 0.65 (7) : 0.35 (6) domain ratio. The benzofuran unit is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 21.50 (6)°. The dihedral angle between the 5-phenyl ring and the benzofuran plane is 29.39 (6)°. No unusually close intermolecular interactions were found.

Related literature top

For the crystal structures of similar benzofuran derivatives, see: Choi, et al. (2009, 2010). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-phenylphenol (340 mg, 2.0 mmol) and 2-chloro-2-methylsulfanyl-4'-chloroacetophenone (470 mg, 2.0 mmol) in dichloromethane (30 ml) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 51%, m.p. 420–421 K; Rf = 0.63 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in carbon tetrachloride at room temperature.

Refinement top

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL97-2 (Sheldrick, 2008). All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.
2-(4-Chlorophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran top
Crystal data top
C21H15ClOSF(000) = 364
Mr = 350.84Dx = 1.390 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4886 reflections
a = 10.921 (1) Åθ = 3.4–27.4°
b = 7.2225 (8) ŵ = 0.36 mm1
c = 11.740 (1) ÅT = 173 K
β = 115.132 (6)°Block, colourless
V = 838.35 (14) Å30.27 × 0.15 × 0.14 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3571 independent reflections
Radiation source: Rotating Anode3376 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 1.9°
ϕ and ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 98
Tmin = 0.911, Tmax = 0.951l = 1515
7754 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.051P)2 + 0.0803P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3571 reflectionsΔρmax = 0.29 e Å3
219 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1505 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.35 (6)
Crystal data top
C21H15ClOSV = 838.35 (14) Å3
Mr = 350.84Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.921 (1) ŵ = 0.36 mm1
b = 7.2225 (8) ÅT = 173 K
c = 11.740 (1) Å0.27 × 0.15 × 0.14 mm
β = 115.132 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3571 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3376 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.951Rint = 0.031
7754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.29 e Å3
S = 1.05Δρmin = 0.23 e Å3
3571 reflectionsAbsolute structure: Flack (1983), 1505 Friedel pairs
219 parametersAbsolute structure parameter: 0.35 (6)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.26159 (5)0.53997 (9)0.01679 (5)0.04418 (14)
S0.45654 (5)0.50246 (9)0.13481 (4)0.04300 (16)
O0.37078 (12)0.5417 (2)0.43085 (10)0.0297 (3)
C10.44798 (18)0.5179 (3)0.28020 (15)0.0289 (4)
C20.56317 (17)0.5235 (3)0.40109 (15)0.0267 (3)
C30.70372 (18)0.5202 (3)0.44147 (15)0.0276 (4)
H30.74120.50780.38220.033*
C40.78803 (17)0.5353 (3)0.56955 (15)0.0270 (3)
C50.72841 (19)0.5488 (3)0.65544 (16)0.0311 (4)
H50.78590.55650.74280.037*
C60.58971 (19)0.5512 (3)0.61716 (16)0.0321 (4)
H60.55130.56070.67590.039*
C70.51007 (18)0.5391 (3)0.48929 (15)0.0287 (3)
C80.33570 (18)0.5302 (3)0.30249 (15)0.0286 (4)
C90.19012 (18)0.5351 (3)0.22349 (15)0.0281 (3)
C100.1017 (2)0.6099 (3)0.26900 (18)0.0297 (4)
H100.13720.65840.35200.036*
C110.0366 (2)0.6149 (3)0.19605 (19)0.0329 (4)
H110.09550.66720.22810.039*
C120.08758 (18)0.5422 (3)0.07541 (16)0.0304 (4)
C130.0032 (2)0.4675 (3)0.02688 (17)0.0335 (4)
H130.03990.41880.05610.040*
C140.1356 (2)0.4641 (3)0.10026 (18)0.0325 (4)
H140.19390.41350.06700.039*
C150.93761 (17)0.5412 (3)0.61447 (15)0.0271 (3)
C161.0017 (2)0.4543 (3)0.54744 (18)0.0316 (4)
H160.94920.38510.47390.038*
C171.1406 (2)0.4677 (3)0.58677 (19)0.0364 (4)
H171.18210.40850.53990.044*
C181.2186 (2)0.5668 (3)0.6939 (2)0.0413 (5)
H181.31340.57810.71980.050*
C191.1582 (2)0.6494 (3)0.7630 (2)0.0416 (5)
H191.21190.71520.83770.050*
C201.0191 (2)0.6369 (3)0.72411 (19)0.0337 (4)
H200.97890.69410.77270.040*
C210.5393 (3)0.7197 (4)0.1356 (2)0.0511 (6)
H21A0.63270.71600.20040.077*
H21B0.49060.82110.15380.077*
H21C0.53940.73980.05310.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0278 (2)0.0580 (3)0.0424 (3)0.0004 (3)0.0107 (2)0.0047 (3)
S0.0401 (3)0.0664 (4)0.0278 (2)0.0108 (3)0.0195 (2)0.0125 (2)
O0.0273 (6)0.0387 (7)0.0259 (5)0.0008 (7)0.0140 (5)0.0006 (6)
C10.0306 (9)0.0330 (10)0.0255 (7)0.0046 (8)0.0142 (7)0.0049 (8)
C20.0298 (8)0.0270 (9)0.0251 (7)0.0008 (8)0.0133 (7)0.0007 (8)
C30.0325 (9)0.0265 (9)0.0270 (7)0.0005 (8)0.0158 (7)0.0003 (8)
C40.0302 (8)0.0237 (8)0.0280 (8)0.0014 (8)0.0132 (7)0.0003 (8)
C50.0348 (9)0.0347 (9)0.0232 (7)0.0019 (9)0.0116 (7)0.0025 (8)
C60.0352 (9)0.0388 (10)0.0273 (8)0.0014 (9)0.0178 (7)0.0003 (9)
C70.0297 (8)0.0301 (9)0.0289 (8)0.0003 (9)0.0150 (7)0.0007 (9)
C80.0337 (9)0.0278 (8)0.0253 (7)0.0021 (9)0.0134 (7)0.0033 (8)
C90.0307 (8)0.0243 (8)0.0305 (8)0.0030 (9)0.0143 (7)0.0003 (8)
C100.0329 (10)0.0291 (9)0.0293 (9)0.0030 (8)0.0152 (8)0.0034 (7)
C110.0324 (10)0.0318 (9)0.0402 (10)0.0008 (8)0.0209 (9)0.0011 (8)
C120.0267 (8)0.0294 (9)0.0321 (8)0.0011 (9)0.0096 (7)0.0049 (9)
C130.0336 (10)0.0366 (10)0.0272 (8)0.0008 (9)0.0099 (8)0.0011 (8)
C140.0320 (10)0.0348 (10)0.0321 (9)0.0005 (8)0.0148 (8)0.0034 (8)
C150.0306 (8)0.0239 (8)0.0264 (7)0.0026 (9)0.0118 (7)0.0045 (8)
C160.0327 (10)0.0310 (10)0.0311 (9)0.0025 (8)0.0135 (8)0.0004 (8)
C170.0357 (11)0.0349 (10)0.0428 (10)0.0080 (9)0.0206 (9)0.0025 (9)
C180.0279 (9)0.0415 (13)0.0511 (12)0.0045 (9)0.0135 (9)0.0003 (10)
C190.0337 (11)0.0396 (12)0.0404 (11)0.0017 (9)0.0050 (9)0.0066 (9)
C200.0324 (10)0.0334 (10)0.0328 (10)0.0045 (9)0.0113 (8)0.0030 (8)
C210.0511 (15)0.0618 (15)0.0523 (14)0.0084 (12)0.0334 (13)0.0191 (12)
Geometric parameters (Å, º) top
Cl—C121.7425 (18)C10—H100.9500
S—C11.7523 (15)C11—C121.386 (3)
S—C211.809 (3)C11—H110.9500
O—C71.378 (2)C12—C131.382 (3)
O—C81.3907 (18)C13—C141.390 (3)
C1—C81.361 (2)C13—H130.9500
C1—C21.443 (2)C14—H140.9500
C2—C71.390 (2)C15—C201.397 (3)
C2—C31.401 (2)C15—C161.404 (2)
C3—C41.394 (2)C16—C171.388 (3)
C3—H30.9500C16—H160.9500
C4—C51.417 (2)C17—C181.382 (3)
C4—C151.489 (2)C17—H170.9500
C5—C61.385 (3)C18—C191.381 (3)
C5—H50.9500C18—H180.9500
C6—C71.382 (2)C19—C201.391 (3)
C6—H60.9500C19—H190.9500
C8—C91.462 (2)C20—H200.9500
C9—C101.396 (3)C21—H21A0.9800
C9—C141.407 (2)C21—H21B0.9800
C10—C111.384 (3)C21—H21C0.9800
C1—S—C2199.95 (11)C12—C11—H11120.6
C7—O—C8106.06 (12)C13—C12—C11121.37 (17)
C8—C1—C2106.82 (14)C13—C12—Cl118.84 (14)
C8—C1—S128.07 (14)C11—C12—Cl119.78 (14)
C2—C1—S125.10 (13)C12—C13—C14119.59 (17)
C7—C2—C3119.55 (15)C12—C13—H13120.2
C7—C2—C1105.65 (15)C14—C13—H13120.2
C3—C2—C1134.79 (14)C13—C14—C9120.33 (17)
C4—C3—C2119.35 (14)C13—C14—H14119.8
C4—C3—H3120.3C9—C14—H14119.8
C2—C3—H3120.3C20—C15—C16117.61 (17)
C3—C4—C5118.70 (16)C20—C15—C4120.92 (16)
C3—C4—C15120.45 (14)C16—C15—C4121.46 (16)
C5—C4—C15120.84 (15)C17—C16—C15121.11 (18)
C6—C5—C4122.67 (16)C17—C16—H16119.4
C6—C5—H5118.7C15—C16—H16119.4
C4—C5—H5118.7C18—C17—C16120.21 (18)
C7—C6—C5116.66 (15)C18—C17—H17119.9
C7—C6—H6121.7C16—C17—H17119.9
C5—C6—H6121.7C19—C18—C17119.66 (19)
O—C7—C6126.34 (14)C19—C18—H18120.2
O—C7—C2110.60 (14)C17—C18—H18120.2
C6—C7—C2123.06 (16)C18—C19—C20120.46 (19)
C1—C8—O110.86 (15)C18—C19—H19119.8
C1—C8—C9134.88 (15)C20—C19—H19119.8
O—C8—C9114.26 (14)C19—C20—C15120.92 (18)
C10—C9—C14118.36 (17)C19—C20—H20119.5
C10—C9—C8120.64 (15)C15—C20—H20119.5
C14—C9—C8121.00 (16)S—C21—H21A109.5
C11—C10—C9121.59 (16)S—C21—H21B109.5
C11—C10—H10119.2H21A—C21—H21B109.5
C9—C10—H10119.2S—C21—H21C109.5
C10—C11—C12118.75 (17)H21A—C21—H21C109.5
C10—C11—H11120.6H21B—C21—H21C109.5
C21—S—C1—C8114.7 (2)C1—C8—C9—C10158.1 (2)
C21—S—C1—C263.9 (2)O—C8—C9—C1021.4 (3)
C8—C1—C2—C70.1 (2)C1—C8—C9—C1422.2 (4)
S—C1—C2—C7178.95 (16)O—C8—C9—C14158.26 (19)
C8—C1—C2—C3178.6 (2)C14—C9—C10—C110.1 (3)
S—C1—C2—C30.3 (4)C8—C9—C10—C11179.60 (18)
C7—C2—C3—C40.9 (3)C9—C10—C11—C120.6 (3)
C1—C2—C3—C4177.6 (2)C10—C11—C12—C130.8 (3)
C2—C3—C4—C51.6 (3)C10—C11—C12—Cl178.00 (16)
C2—C3—C4—C15177.07 (18)C11—C12—C13—C140.3 (3)
C3—C4—C5—C61.3 (3)Cl—C12—C13—C14178.46 (15)
C15—C4—C5—C6177.4 (2)C12—C13—C14—C90.3 (3)
C4—C5—C6—C70.2 (3)C10—C9—C14—C130.5 (3)
C8—O—C7—C6178.7 (2)C8—C9—C14—C13179.14 (18)
C8—O—C7—C20.9 (2)C3—C4—C15—C20150.24 (19)
C5—C6—C7—O179.0 (2)C5—C4—C15—C2028.4 (3)
C5—C6—C7—C20.5 (3)C3—C4—C15—C1628.6 (3)
C3—C2—C7—O179.40 (17)C5—C4—C15—C16152.8 (2)
C1—C2—C7—O0.5 (2)C20—C15—C16—C171.9 (3)
C3—C2—C7—C60.2 (3)C4—C15—C16—C17176.97 (18)
C1—C2—C7—C6179.1 (2)C15—C16—C17—C180.4 (3)
C2—C1—C8—O0.6 (3)C16—C17—C18—C191.3 (3)
S—C1—C8—O179.45 (15)C17—C18—C19—C201.4 (3)
C2—C1—C8—C9178.9 (2)C18—C19—C20—C150.2 (3)
S—C1—C8—C90.1 (4)C16—C15—C20—C191.8 (3)
C7—O—C8—C10.9 (2)C4—C15—C20—C19177.09 (19)
C7—O—C8—C9178.73 (16)

Experimental details

Crystal data
Chemical formulaC21H15ClOS
Mr350.84
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.921 (1), 7.2225 (8), 11.740 (1)
β (°) 115.132 (6)
V3)838.35 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.27 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.911, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
7754, 3571, 3376
Rint0.031
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.05
No. of reflections3571
No. of parameters219
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23
Absolute structureFlack (1983), 1505 Friedel pairs
Absolute structure parameter0.35 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds