organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­benzimidazolium nitrate

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: ydma@sdu.edu.cn

(Received 15 January 2010; accepted 6 March 2010; online 13 March 2010)

In the title compound, C8H9N2+·NO3, inter­molecular N—H⋯O hydrogen bonds join the mol­ecules into a chain extending along the b axis.

Related literature

For the applications of related benzimidazole compounds, see: Wright (1951[Wright, J. B. (1951). Chem. Rev. 48, 397-541.]); El-masry et al. (2000[El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. H. (2000). Molecules, 5, 1429-1438.]); Gümüş et al. (2003[Gümüş, F., Algül, Ö., Eren, G., Eroğlu, H., Diril, N., Gür, S. & Özkul, A. (2003). Eur. J. Med. Chem. 38, 473-480.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N2+·NO3

  • Mr = 195.18

  • Monoclinic, P 21 /c

  • a = 7.711 (4) Å

  • b = 15.127 (7) Å

  • c = 8.270 (4) Å

  • β = 99.398 (7)°

  • V = 951.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.987

  • 4774 measured reflections

  • 1685 independent reflections

  • 1319 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.07

  • 1685 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.03 2.855 (3) 162
N3—H3⋯O2ii 0.86 1.93 2.775 (2) 166
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazole and its derivatives have found practical applications in a number of fields (Wright, 1951). This ring system is present in numerous antiparasitic, antihelmintic and anti-inflammatory drugs (El-masry et al., 2000). The complexes of transition metals with benzimidazole and related ligands have been extensively studied as models of some important biological molecules (Gümüş et al., 2003). During our search to find new benzimidazole-metal complexes 2-methylbenzimidazole nitrate was unintentionally obtained.

Herein, we report the structure of the title compound, C8H9N3O3 (Fig 1). The crystal structure showed that intermolecular N—H···O hydrogen bonds link the molecules into a 1D polymeric structure (Fig. 2).

Related literature top

For the applications of related benzimidazole compounds, see: Wright (1951); El-masry et al. (2000); Gümüş et al. (2003).

Experimental top

A mixture of o-phenylenediamine(1.08 g, 10 mmol) and anhydrous sodium acetate (2.46 g, 30 mmol) were dissolved in 100 mL 5% hydrochloric acid. After stirring for 2 h under reflux, the solution was cooled to room temperature. Then the solution was treated with ammonia solution to pH 9-10 and an orange precipitate was formed. The precipitate was filtred and washed with water. 2-methylbenzimidazolium chloride was gained in 27.32% yield. The compound 2-methylbenzimidazole nitrate was obtained in 35% yield when the 2-methylbenzimidazolium chloride (0.46 g, 2.73 mmol) was reacted with Cr(NO3)3.9H2O (1.01 g, 2.54 mmol) in ethanol under reflux. The crystals suitable for X-ray diffraction analysis were obtained by recrystallization from ethanol.

Refinement top

All H atoms were located in difference maps. H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 (aromatic), 0.96 (CH3—H) and 0.86 (N—H) Å, and with Uiso(H) =kUeq(C), where k is 1.5 for the methyl group and 1.2 for all the other H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement.
[Figure 2] Fig. 2. The supramolecular chain of the title compound formed via N—H···O hydrogen bonds.
2-methylbenzimidazolium nitrate top
Crystal data top
C8H9N2+·NO3F(000) = 408
Mr = 195.18Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2174 reflections
a = 7.711 (4) Åθ = 2.5–25.5°
b = 15.127 (7) ŵ = 0.11 mm1
c = 8.270 (4) ÅT = 298 K
β = 99.398 (7)°Block, colorless
V = 951.7 (8) Å30.18 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1685 independent reflections
Radiation source: fine-focus sealed tube1319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.981, Tmax = 0.987k = 1118
4774 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.208P]
where P = (Fo2 + 2Fc2)/3
1685 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H9N2+·NO3V = 951.7 (8) Å3
Mr = 195.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.711 (4) ŵ = 0.11 mm1
b = 15.127 (7) ÅT = 298 K
c = 8.270 (4) Å0.18 × 0.16 × 0.12 mm
β = 99.398 (7)°
Data collection top
Bruker SMART APEX
diffractometer
1685 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1319 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.027
4774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
1685 reflectionsΔρmin = 0.21 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3641 (2)0.06287 (10)0.78462 (18)0.0735 (5)
O20.33057 (19)0.15524 (9)0.97555 (17)0.0643 (4)
O30.2248 (3)0.02349 (11)0.9773 (2)0.0915 (6)
N10.3063 (2)0.07987 (10)0.9136 (2)0.0538 (4)
N20.6679 (2)0.12445 (11)0.25067 (19)0.0600 (5)
H20.68280.06870.23740.072*
N30.5577 (2)0.24731 (11)0.31726 (19)0.0576 (5)
H30.48890.28420.35420.069*
C10.3941 (3)0.11166 (15)0.3743 (3)0.0727 (6)
H1A0.39210.05160.33680.109*
H1B0.28390.13950.33310.109*
H1C0.41320.11260.49200.109*
C20.5376 (3)0.15990 (13)0.3145 (2)0.0569 (5)
C30.7769 (3)0.19049 (13)0.2083 (2)0.0561 (5)
C40.7057 (3)0.26993 (13)0.2519 (2)0.0542 (5)
C50.7834 (3)0.35057 (14)0.2303 (3)0.0677 (6)
H50.73560.40350.25950.081*
C60.9355 (3)0.34816 (19)0.1630 (3)0.0805 (7)
H60.99200.40090.14630.097*
C71.0070 (3)0.2684 (2)0.1191 (3)0.0802 (7)
H71.10950.26950.07340.096*
C80.9302 (3)0.18829 (18)0.1416 (3)0.0715 (7)
H80.97870.13530.11340.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1006 (12)0.0560 (9)0.0718 (10)0.0061 (8)0.0370 (9)0.0048 (7)
O20.0865 (10)0.0434 (8)0.0651 (9)0.0085 (7)0.0188 (7)0.0067 (6)
O30.1307 (16)0.0554 (10)0.0990 (13)0.0287 (10)0.0499 (12)0.0017 (8)
N10.0628 (10)0.0406 (9)0.0590 (10)0.0020 (7)0.0127 (8)0.0042 (7)
N20.0735 (11)0.0464 (9)0.0564 (10)0.0153 (8)0.0006 (8)0.0086 (7)
N30.0710 (11)0.0476 (10)0.0521 (9)0.0150 (8)0.0038 (8)0.0094 (7)
C10.0902 (16)0.0612 (14)0.0673 (13)0.0017 (12)0.0145 (12)0.0006 (11)
C20.0728 (13)0.0487 (12)0.0462 (10)0.0126 (10)0.0004 (9)0.0052 (8)
C30.0621 (12)0.0575 (12)0.0440 (10)0.0131 (10)0.0051 (8)0.0086 (9)
C40.0619 (11)0.0536 (11)0.0433 (10)0.0096 (9)0.0024 (8)0.0058 (8)
C50.0810 (15)0.0539 (13)0.0631 (13)0.0037 (11)0.0033 (11)0.0019 (10)
C60.0806 (16)0.0842 (18)0.0716 (15)0.0133 (14)0.0030 (12)0.0061 (13)
C70.0679 (14)0.105 (2)0.0662 (14)0.0061 (14)0.0070 (11)0.0032 (14)
C80.0685 (14)0.0831 (17)0.0593 (13)0.0169 (13)0.0007 (11)0.0124 (11)
Geometric parameters (Å, º) top
O1—N11.248 (2)C1—H1C0.9600
O2—N11.252 (2)C3—C81.384 (3)
O3—N11.228 (2)C3—C41.393 (3)
N2—C21.322 (3)C4—C51.383 (3)
N2—C31.387 (3)C5—C61.378 (4)
N2—H20.8600C5—H50.9300
N3—C21.331 (3)C6—C71.399 (4)
N3—C41.383 (3)C6—H60.9300
N3—H30.8600C7—C81.374 (4)
C1—C21.476 (3)C7—H70.9300
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600
O3—N1—O1120.19 (17)C8—C3—N2132.5 (2)
O3—N1—O2120.66 (17)C8—C3—C4121.5 (2)
O1—N1—O2119.14 (16)N2—C3—C4105.96 (18)
C2—N2—C3109.90 (17)C5—C4—N3132.13 (19)
C2—N2—H2125.1C5—C4—C3122.0 (2)
C3—N2—H2125.1N3—C4—C3105.85 (18)
C2—N3—C4109.90 (16)C6—C5—C4116.3 (2)
C2—N3—H3125.1C6—C5—H5121.8
C4—N3—H3125.1C4—C5—H5121.8
C2—C1—H1A109.5C5—C6—C7121.7 (2)
C2—C1—H1B109.5C5—C6—H6119.2
H1A—C1—H1B109.5C7—C6—H6119.2
C2—C1—H1C109.5C8—C7—C6121.9 (2)
H1A—C1—H1C109.5C8—C7—H7119.1
H1B—C1—H1C109.5C6—C7—H7119.1
N2—C2—N3108.40 (19)C7—C8—C3116.6 (2)
N2—C2—C1126.37 (19)C7—C8—H8121.7
N3—C2—C1125.23 (19)C3—C8—H8121.7
C3—N2—C2—N30.6 (2)C8—C3—C4—N3178.53 (17)
C3—N2—C2—C1179.86 (19)N2—C3—C4—N30.24 (19)
C4—N3—C2—N20.4 (2)N3—C4—C5—C6178.52 (19)
C4—N3—C2—C1179.99 (19)C3—C4—C5—C60.0 (3)
C2—N2—C3—C8178.5 (2)C4—C5—C6—C70.0 (3)
C2—N2—C3—C40.5 (2)C5—C6—C7—C80.4 (4)
C2—N3—C4—C5178.8 (2)C6—C7—C8—C30.7 (3)
C2—N3—C4—C30.1 (2)N2—C3—C8—C7178.4 (2)
C8—C3—C4—C50.3 (3)C4—C3—C8—C70.7 (3)
N2—C3—C4—C5178.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.032.855 (3)162
N3—H3···O2ii0.861.932.775 (2)166
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H9N2+·NO3
Mr195.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.711 (4), 15.127 (7), 8.270 (4)
β (°) 99.398 (7)
V3)951.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4774, 1685, 1319
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.07
No. of reflections1685
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.032.855 (3)162
N3—H3···O2ii0.861.932.775 (2)166
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant Nos. 20441004, 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. H. (2000). Molecules, 5, 1429–1438.  CAS Google Scholar
First citationGümüş, F., Algül, Ö., Eren, G., Eroğlu, H., Diril, N., Gür, S. & Özkul, A. (2003). Eur. J. Med. Chem. 38, 473–480.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, J. B. (1951). Chem. Rev. 48, 397–541.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds