metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium(II) bis­­[4-(3-eth­­oxy-2-hy­droxy­benzyl­­idene­amino)-3-methyl­benzene­sulfonate]

aDepartment of Chemistry, Weifang University, Weifang 261061, People's Republic of China, and bDepartment of Physics, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 7 March 2010; accepted 15 March 2010; online 20 March 2010)

In the title compound, [Mg(H2O)6](C16H16NO5S)2, the Mg2+ ion (site symmetry 2) adopts an almost regular octa­hedral coordination geometry. The anion is stabilized by an intra­molecular O—H⋯N hydrogen bond, generating an S(6) ring, and the dihedral angle between the aromatic rings is 41.02 (7)°. In the crystal, the cations and anions are linked by O—H⋯O hydrogen bonds, generating sheets lying parallel to (100).

Related literature

For background to the properties of Schiff bases, see: Qiu et al. (2008[Qiu, X. Y., Luo, Z. G., Liu, W. S. & Zhu, H. L. (2008). Chin. J. Struct. Chem. 27, 707-711.]); Tai et al. (2003[Tai, X. S., Yin, X. H. & Tan, M. Y. (2003). Pol. J. Chem. 77, 411-414.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C16H16NO5S)

  • Mr = 801.12

  • Monoclinic, C 2/c

  • a = 38.710 (11) Å

  • b = 7.531 (2) Å

  • c = 13.087 (3) Å

  • β = 104.986 (4)°

  • V = 3685.6 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.972

  • 9339 measured reflections

  • 3253 independent reflections

  • 2924 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.07

  • 3253 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O6 2.0510 (11)
Mg1—O8 2.0605 (12)
Mg1—O7 2.0638 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.82 1.91 2.6355 (18) 146
O6—H15⋯O2i 0.85 2.04 2.8744 (16) 168
O6—H16⋯O1ii 0.85 2.01 2.8416 (16) 165
O7—H17⋯O1iii 0.85 2.00 2.8349 (17) 166
O7—H18⋯O3ii 0.85 2.02 2.8528 (16) 166
O8—H19⋯O3i 0.85 2.02 2.8563 (16) 168
O8—H20⋯O2iii 0.85 2.08 2.8895 (17) 159
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases play an important role in the field of bioinorganic chemistry because they have remarkable wide biological and pharmacological activities, such as antitumor, antidiabetic, antitubercular activities [Tai, et al., 2003; Qiu, et al., 2008]. Therefore, investigating the synthesis and proper ties of hydrazone of these compounds seems to be a very interesting problem. as one part of our systematic work, In this paper, we report on the synthesis and crystal structure of the title compound, (I), (Scheme I).

The bond distances of Mg—O are in the range of 2.0510 (11)-2.0638 (12). The bond distances of C8—N1(1.282 (2)), S1—O2 (1.4588 (11)) and S1—O3 (1.4590 (11)) are consistent with the carbon-nitrogen and sulphur-oxygen double-bond lengths, respectively. In the crystal packing, the molecules form a one-dimensional chain structure by hydrogen bonds.

Related literature top

For background to the properties of Schiff bases, see: Qiu et al. (2008); Tai et al. (2003).

Experimental top

A solution of 1.0 mmol 3-ethoxysalicylaldehyde was added to a solution of 1.0 mmol 4-amino-3-methyl-benzenesulfonic acid in 5 ml 95% ethanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids.
Hexaaquamagnesium(II) bis[4-(3-ethoxy-2-hydroxybenzylideneamino)-3-methylbenzenesulfonate] top
Crystal data top
[Mg(H2O)6](C16H16NO5S)F(000) = 1688
Mr = 801.12Dx = 1.444 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5727 reflections
a = 38.710 (11) Åθ = 3.1–28.3°
b = 7.531 (2) ŵ = 0.24 mm1
c = 13.087 (3) ÅT = 293 K
β = 104.986 (4)°Block, colourless
V = 3685.6 (17) Å30.19 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3253 independent reflections
Radiation source: fine-focus sealed tube2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 4641
Tmin = 0.956, Tmax = 0.972k = 88
9339 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0466P)2 + 2.1281P]
where P = (Fo2 + 2Fc2)/3
3253 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Mg(H2O)6](C16H16NO5S)V = 3685.6 (17) Å3
Mr = 801.12Z = 4
Monoclinic, C2/cMo Kα radiation
a = 38.710 (11) ŵ = 0.24 mm1
b = 7.531 (2) ÅT = 293 K
c = 13.087 (3) Å0.19 × 0.16 × 0.12 mm
β = 104.986 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3253 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2924 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.972Rint = 0.024
9339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3253 reflectionsΔρmin = 0.48 e Å3
241 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.76200 (8)0.75000.02561 (17)
S10.053241 (9)0.73171 (5)0.12108 (3)0.02690 (12)
N10.21154 (3)0.64726 (18)0.21861 (10)0.0358 (3)
O10.03738 (3)0.57836 (14)0.05783 (8)0.0372 (3)
O20.04508 (3)0.89760 (14)0.06222 (8)0.0357 (3)
O30.04451 (3)0.73756 (14)0.22300 (8)0.0352 (3)
O40.27591 (3)0.69109 (17)0.34589 (8)0.0414 (3)
H40.25400.68760.32930.062*
O50.34554 (3)0.68788 (17)0.37345 (9)0.0426 (3)
O60.03010 (3)0.76330 (14)0.85798 (9)0.0404 (3)
H150.03330.85680.89080.061*
H160.03200.67140.89380.061*
O70.03189 (3)0.56722 (15)0.66233 (8)0.0409 (3)
H170.03290.55090.59740.061*
H180.03530.46620.68700.061*
O80.03191 (3)0.95651 (15)0.66277 (8)0.0458 (3)
H190.03681.05460.68800.069*
H200.03590.96800.59610.069*
C10.10021 (4)0.70263 (19)0.14849 (11)0.0280 (3)
C20.11930 (4)0.63608 (19)0.24591 (11)0.0309 (3)
H20.10710.60550.29600.037*
C30.15615 (4)0.6144 (2)0.26994 (11)0.0320 (3)
C40.17378 (4)0.6597 (2)0.19257 (12)0.0318 (3)
C50.15439 (4)0.7242 (2)0.09457 (12)0.0356 (4)
H50.16630.75360.04370.043*
C60.11778 (4)0.7452 (2)0.07202 (12)0.0340 (4)
H60.10510.78750.00630.041*
C70.17670 (4)0.5461 (2)0.37649 (12)0.0431 (4)
H7A0.19020.44320.36720.065*
H7B0.16030.51480.41740.065*
H7C0.19270.63670.41270.065*
C80.22688 (4)0.5956 (2)0.14795 (13)0.0380 (4)
H80.21270.56090.08230.046*
C90.26537 (4)0.5886 (2)0.16581 (12)0.0353 (3)
C100.28823 (4)0.6380 (2)0.26306 (12)0.0327 (3)
C110.32543 (4)0.6332 (2)0.27646 (12)0.0343 (3)
C120.33903 (4)0.5734 (2)0.19455 (13)0.0387 (4)
H120.36360.56980.20350.046*
C130.31630 (5)0.5186 (2)0.09917 (13)0.0417 (4)
H130.32580.47560.04550.050*
C140.27993 (5)0.5279 (2)0.08417 (13)0.0414 (4)
H140.26480.49390.01970.050*
C150.38322 (4)0.7012 (2)0.38726 (13)0.0384 (4)
H15A0.38850.78890.33920.046*
H15B0.39290.58780.37290.046*
C160.39945 (5)0.7556 (2)0.49975 (15)0.0470 (4)
H16A0.39080.87120.51180.070*
H16B0.42500.75900.51290.070*
H16C0.39290.67140.54660.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0316 (4)0.0244 (3)0.0216 (3)0.0000.0083 (3)0.000
S10.0321 (2)0.0256 (2)0.0227 (2)0.00147 (13)0.00662 (15)0.00049 (13)
N10.0347 (7)0.0373 (7)0.0357 (7)0.0021 (6)0.0095 (6)0.0026 (6)
O10.0446 (6)0.0337 (6)0.0315 (6)0.0093 (5)0.0067 (5)0.0049 (5)
O20.0427 (6)0.0314 (6)0.0324 (6)0.0033 (5)0.0087 (5)0.0052 (4)
O30.0422 (6)0.0378 (6)0.0285 (6)0.0008 (5)0.0143 (5)0.0002 (4)
O40.0356 (6)0.0564 (7)0.0342 (6)0.0017 (6)0.0126 (5)0.0072 (5)
O50.0323 (6)0.0569 (7)0.0391 (6)0.0010 (5)0.0098 (5)0.0048 (6)
O60.0551 (7)0.0334 (6)0.0411 (7)0.0028 (5)0.0277 (6)0.0015 (5)
O70.0572 (7)0.0356 (6)0.0294 (5)0.0140 (5)0.0103 (5)0.0040 (5)
O80.0668 (8)0.0374 (6)0.0299 (6)0.0180 (6)0.0067 (5)0.0026 (5)
C10.0334 (8)0.0251 (7)0.0251 (7)0.0015 (6)0.0066 (6)0.0025 (6)
C20.0373 (8)0.0315 (8)0.0251 (7)0.0013 (6)0.0099 (6)0.0006 (6)
C30.0380 (8)0.0291 (8)0.0274 (7)0.0004 (6)0.0059 (6)0.0010 (6)
C40.0343 (8)0.0284 (8)0.0329 (8)0.0009 (6)0.0088 (6)0.0038 (6)
C50.0412 (9)0.0383 (9)0.0309 (8)0.0005 (7)0.0158 (7)0.0031 (6)
C60.0415 (9)0.0346 (8)0.0258 (8)0.0037 (6)0.0084 (6)0.0035 (6)
C70.0425 (9)0.0536 (11)0.0316 (8)0.0066 (8)0.0067 (7)0.0057 (8)
C80.0399 (9)0.0393 (9)0.0337 (8)0.0004 (7)0.0077 (7)0.0044 (7)
C90.0383 (8)0.0344 (8)0.0346 (8)0.0009 (7)0.0119 (6)0.0007 (7)
C100.0380 (8)0.0298 (8)0.0328 (8)0.0012 (6)0.0138 (6)0.0011 (6)
C110.0363 (8)0.0323 (8)0.0355 (8)0.0033 (6)0.0116 (6)0.0042 (6)
C120.0398 (9)0.0378 (9)0.0425 (9)0.0054 (7)0.0178 (7)0.0057 (7)
C130.0528 (10)0.0403 (9)0.0388 (9)0.0064 (8)0.0241 (8)0.0011 (7)
C140.0491 (10)0.0440 (10)0.0326 (8)0.0011 (8)0.0132 (7)0.0031 (7)
C150.0335 (8)0.0371 (9)0.0458 (9)0.0024 (7)0.0124 (7)0.0042 (7)
C160.0405 (10)0.0506 (11)0.0481 (11)0.0012 (7)0.0083 (8)0.0010 (8)
Geometric parameters (Å, º) top
Mg1—O6i2.0510 (11)C3—C41.402 (2)
Mg1—O62.0510 (11)C3—C71.506 (2)
Mg1—O8i2.0605 (12)C4—C51.395 (2)
Mg1—O82.0605 (12)C5—C61.380 (2)
Mg1—O72.0638 (12)C5—H50.9300
Mg1—O7i2.0638 (12)C6—H60.9300
S1—O21.4588 (11)C7—H7A0.9600
S1—O31.4590 (11)C7—H7B0.9600
S1—O11.4605 (11)C7—H7C0.9600
S1—C11.7735 (16)C8—C91.448 (2)
N1—C81.282 (2)C8—H80.9300
N1—C41.416 (2)C9—C101.399 (2)
O4—C101.3526 (18)C9—C141.407 (2)
O4—H40.8200C10—C111.405 (2)
O5—C111.3695 (19)C11—C121.386 (2)
O5—C151.4262 (19)C12—C131.391 (2)
O6—H150.8499C12—H120.9300
O6—H160.8499C13—C141.372 (2)
O7—H170.8500C13—H130.9300
O7—H180.8500C14—H140.9300
O8—H190.8497C15—C161.500 (2)
O8—H200.8498C15—H15A0.9700
C1—C61.385 (2)C15—H15B0.9700
C1—C21.391 (2)C16—H16A0.9600
C2—C31.389 (2)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
O6i—Mg1—O6179.45 (7)C6—C5—C4121.00 (14)
O6i—Mg1—O8i90.71 (5)C6—C5—H5119.5
O6—Mg1—O8i88.90 (5)C4—C5—H5119.5
O6i—Mg1—O888.90 (5)C5—C6—C1119.21 (14)
O6—Mg1—O890.71 (5)C5—C6—H6120.4
O8i—Mg1—O889.38 (7)C1—C6—H6120.4
O6i—Mg1—O789.14 (5)C3—C7—H7A109.5
O6—Mg1—O791.25 (5)C3—C7—H7B109.5
O8i—Mg1—O7179.85 (5)H7A—C7—H7B109.5
O8—Mg1—O790.61 (5)C3—C7—H7C109.5
O6i—Mg1—O7i91.25 (5)H7A—C7—H7C109.5
O6—Mg1—O7i89.14 (5)H7B—C7—H7C109.5
O8i—Mg1—O7i90.61 (5)N1—C8—C9122.93 (15)
O8—Mg1—O7i179.85 (5)N1—C8—H8118.5
O7—Mg1—O7i89.40 (7)C9—C8—H8118.5
O2—S1—O3112.78 (6)C10—C9—C14119.59 (15)
O2—S1—O1112.09 (7)C10—C9—C8121.29 (14)
O3—S1—O1112.28 (6)C14—C9—C8119.11 (14)
O2—S1—C1106.45 (7)O4—C10—C9122.43 (14)
O3—S1—C1106.66 (7)O4—C10—C11118.02 (13)
O1—S1—C1106.00 (7)C9—C10—C11119.55 (14)
C8—N1—C4119.24 (13)O5—C11—C12125.18 (14)
C10—O4—H4109.5O5—C11—C10115.24 (13)
C11—O5—C15117.14 (12)C12—C11—C10119.57 (14)
Mg1—O6—H15122.3C11—C12—C13120.80 (15)
Mg1—O6—H16121.5C11—C12—H12119.6
H15—O6—H16110.6C13—C12—H12119.6
Mg1—O7—H17121.6C14—C13—C12120.05 (15)
Mg1—O7—H18123.7C14—C13—H13120.0
H17—O7—H18106.2C12—C13—H13120.0
Mg1—O8—H19124.4C13—C14—C9120.37 (15)
Mg1—O8—H20124.3C13—C14—H14119.8
H19—O8—H20108.1C9—C14—H14119.8
C6—C1—C2120.12 (14)O5—C15—C16107.37 (14)
C6—C1—S1119.63 (11)O5—C15—H15A110.2
C2—C1—S1120.24 (11)C16—C15—H15A110.2
C3—C2—C1121.40 (14)O5—C15—H15B110.2
C3—C2—H2119.3C16—C15—H15B110.2
C1—C2—H2119.3H15A—C15—H15B108.5
C2—C3—C4118.12 (13)C15—C16—H16A109.5
C2—C3—C7121.04 (14)C15—C16—H16B109.5
C4—C3—C7120.84 (14)H16A—C16—H16B109.5
C5—C4—C3120.14 (14)C15—C16—H16C109.5
C5—C4—N1121.40 (14)H16A—C16—H16C109.5
C3—C4—N1118.38 (13)H16B—C16—H16C109.5
O2—S1—C1—C639.83 (13)C4—N1—C8—C9176.38 (14)
O3—S1—C1—C6160.48 (12)N1—C8—C9—C100.3 (3)
O1—S1—C1—C679.69 (13)N1—C8—C9—C14179.19 (16)
O2—S1—C1—C2140.68 (12)C14—C9—C10—O4177.47 (15)
O3—S1—C1—C220.03 (14)C8—C9—C10—O41.4 (2)
O1—S1—C1—C299.81 (13)C14—C9—C10—C112.6 (2)
C6—C1—C2—C31.4 (2)C8—C9—C10—C11178.57 (14)
S1—C1—C2—C3179.08 (11)C15—O5—C11—C126.7 (2)
C1—C2—C3—C40.7 (2)C15—O5—C11—C10174.24 (13)
C1—C2—C3—C7178.62 (15)O4—C10—C11—O51.4 (2)
C2—C3—C4—C50.1 (2)C9—C10—C11—O5178.52 (14)
C7—C3—C4—C5179.45 (15)O4—C10—C11—C12177.67 (14)
C2—C3—C4—N1176.55 (13)C9—C10—C11—C122.4 (2)
C7—C3—C4—N12.8 (2)O5—C11—C12—C13179.20 (15)
C8—N1—C4—C539.8 (2)C10—C11—C12—C130.2 (2)
C8—N1—C4—C3143.58 (16)C11—C12—C13—C141.8 (3)
C3—C4—C5—C60.2 (2)C12—C13—C14—C91.6 (3)
N1—C4—C5—C6176.35 (14)C10—C9—C14—C130.6 (2)
C4—C5—C6—C10.5 (2)C8—C9—C14—C13179.48 (15)
C2—C1—C6—C51.3 (2)C11—O5—C15—C16177.74 (14)
S1—C1—C6—C5179.20 (11)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.912.6355 (18)146
O6—H15···O2ii0.852.042.8744 (16)168
O6—H16···O1iii0.852.012.8416 (16)165
O7—H17···O1iv0.852.002.8349 (17)166
O7—H18···O3iii0.852.022.8528 (16)166
O8—H19···O3ii0.852.022.8563 (16)168
O8—H20···O2iv0.852.082.8895 (17)159
Symmetry codes: (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C16H16NO5S)
Mr801.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)38.710 (11), 7.531 (2), 13.087 (3)
β (°) 104.986 (4)
V3)3685.6 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.19 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.956, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9339, 3253, 2924
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.07
No. of reflections3253
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O62.0510 (11)Mg1—O72.0638 (12)
Mg1—O82.0605 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.912.6355 (18)146
O6—H15···O2i0.852.042.8744 (16)168
O6—H16···O1ii0.852.012.8416 (16)165
O7—H17···O1iii0.852.002.8349 (17)166
O7—H18···O3ii0.852.022.8528 (16)166
O8—H19···O3i0.852.022.8563 (16)168
O8—H20···O2iii0.852.082.8895 (17)159
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1/2.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong (Y2007B60) for a research grant.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQiu, X. Y., Luo, Z. G., Liu, W. S. & Zhu, H. L. (2008). Chin. J. Struct. Chem. 27, 707–711.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X. S., Yin, X. H. & Tan, M. Y. (2003). Pol. J. Chem. 77, 411–414.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds