organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o868-o869

N-[4-(N-Cyclo­hexyl­sulfamo­yl)phen­yl]acetamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 12 March 2010; accepted 14 March 2010; online 20 March 2010)

In the title compound, C14H20N2O3S, the cyclo­hexyl ring adopts a chair conformation: the four coplanar C atoms of this ring make a dihedral angle of 64.8 (2)° with the benzene ring. In the mol­ecule, an intra­molecular C—H⋯O contact generates an S(6) ring motif. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds into two-dimensional layers propagating in (100).

Related literature

For related structures, see: Sharif et al. (2010[Sharif, S., Akkurt, M., Khan, I. U., Salariya, M. A. & Ahmad, S. (2010). Acta Cryst. E66, o73-o74.]); Mariam et al. (2009a[Mariam, I., Akkurt, M., Sharif, S., Akhtar, N. & Khan, I. U. (2009a). Acta Cryst. E65, o2797.],b[Mariam, I., Akkurt, M., Sharif, S., Haider, S. K. & Khan, I. U. (2009b). Acta Cryst. E65, o1737.]); Asiri et al. (2009[Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.]); Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]); Arshad et al. (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.], 2009[Arshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2009). Acta Cryst. E65, o3229.]); Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]); Haider et al. (2010[Haider, Z., Arshad, M. N., Simpson, J., Khan, I. U. & Shafiq, M. (2010). Acta Cryst. E66, o102.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2O3S

  • Mr = 296.39

  • Monoclinic, P 21 /c

  • a = 14.6929 (19) Å

  • b = 13.3486 (19) Å

  • c = 7.9769 (12) Å

  • β = 102.387 (7)°

  • V = 1528.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.32 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11442 measured reflections

  • 3628 independent reflections

  • 1358 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.218

  • S = 0.94

  • 3628 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.07 2.862 (4) 153
N2—H2⋯O2ii 0.86 2.11 2.970 (4) 177
C9—H9⋯O3 0.93 2.28 2.866 (5) 120
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I), (Fig.1), was prepared and characterized as part of our ongoing studies of sulfonamide derivatives (Mariam et al., 2009a,b; Sharif et al., 2010).

The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in similar structures (Sharif et al., 2010; Mariam et al., 2009a,b; Asiri et al., 2009; Khan et al., 2009; Arshad et al., 2008; Gowda et al., 2007a,b,c; Haider et al., 2010).

The C1–C6 cyclohexyl ring of (I) adopts a classic chair conformation [puckering parameters (Cremer & Pople, 1975) QT = 0.559 (6) Å, θ = 180.0 (6) ° and ϕ = 212 (16) °]. Atoms C1 and C4 deviate by -0.667 (6)Å and 0.639 (4) Å, respectively, from the plane through the other four atoms (C2,C3, C5 and C6) of the cyclohexane ring. The dihedral angle between the benzene ring (C7–C12) and the C2/C3/C5/C6 least-squares plane of the cyclohexane ring is 64.76 (20)° (Nardelli, 1983).

In the molecule of (I), intramolecular C—H···O hydrogen contacts generate S(5) and S(6) ring motifs (Bernstein et al., 1995) (Table 1). In the crystal structure of (I), molecules are linked via intermolecular N—H···O hydrogen bonds into two-dimensional layers extended along the b axis (Table 1 and Fig. 2).

Related literature top

For related structures, see: Sharif et al. (2010); Mariam et al. (2009a,b); Asiri et al. (2009); Khan et al. (2009); Arshad et al. (2008, 2009); Gowda et al. (2007a,b,c); Haider et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To 0.5 g ( 1.96 mmol ) N-acetyl p-amino sulfonyl chloride in 10 ml of distilled water was added 0.23 ml of cyclohexylamine (1.96 mmol) and stirring continued at room temperature, while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was continuously monitored by TLC. After consumption of all the reactants the mixture was filtered, dried and recrystalized from ethyl acetate to yield colourless needles of (I).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with N—H = 0.86 Å and C—H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(N, C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecule of (I) with displacement ellipsoids depicted at the 50% probability level for all non-H atoms.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I) viewed down a-axis. Hydrogen bonding is indicated by dashed lines. For clarity, H atoms not involved in hydrogen bonding are omitted.
N-[4-(N-Cyclohexylsulfamoyl)phenyl]acetamide top
Crystal data top
C14H20N2O3SF(000) = 632
Mr = 296.39Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1027 reflections
a = 14.6929 (19) Åθ = 3.0–18.7°
b = 13.3486 (19) ŵ = 0.22 mm1
c = 7.9769 (12) ÅT = 296 K
β = 102.387 (7)°Needle, colourless
V = 1528.1 (4) Å30.32 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1358 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.110
Graphite monochromatorθmax = 28.0°, θmin = 1.4°
ϕ and ω scansh = 1916
11442 measured reflectionsk = 1716
3628 independent reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0926P)2]
where P = (Fo2 + 2Fc2)/3
3628 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H20N2O3SV = 1528.1 (4) Å3
Mr = 296.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6929 (19) ŵ = 0.22 mm1
b = 13.3486 (19) ÅT = 296 K
c = 7.9769 (12) Å0.32 × 0.09 × 0.06 mm
β = 102.387 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
1358 reflections with I > 2σ(I)
11442 measured reflectionsRint = 0.110
3628 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 0.94Δρmax = 0.30 e Å3
3628 reflectionsΔρmin = 0.38 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68133 (8)0.41022 (7)0.21719 (15)0.0554 (4)
O10.7323 (2)0.3332 (2)0.1552 (4)0.0645 (11)
O20.6417 (2)0.4904 (2)0.1059 (4)0.0679 (11)
O30.2838 (2)0.3369 (2)0.5231 (4)0.0801 (15)
N10.7470 (2)0.4618 (2)0.3789 (5)0.0619 (13)
N20.3647 (2)0.2116 (2)0.4351 (4)0.0515 (11)
C10.9600 (4)0.3914 (5)0.8177 (8)0.098 (3)
C20.9654 (3)0.3437 (5)0.6484 (8)0.101 (3)
C30.9037 (3)0.3989 (4)0.4997 (7)0.078 (2)
C40.8045 (3)0.4037 (3)0.5194 (6)0.0537 (16)
C50.7987 (3)0.4482 (4)0.6899 (6)0.0732 (19)
C60.8608 (4)0.3946 (4)0.8377 (7)0.085 (2)
C70.5888 (3)0.3520 (3)0.2880 (5)0.0468 (16)
C80.5176 (3)0.4092 (3)0.3263 (6)0.0585 (16)
C90.4436 (3)0.3657 (3)0.3762 (6)0.0553 (16)
C100.4389 (3)0.2626 (3)0.3903 (5)0.0437 (12)
C110.5109 (3)0.2061 (3)0.3535 (5)0.0488 (16)
C120.5852 (3)0.2493 (3)0.3041 (5)0.0483 (16)
C130.2927 (3)0.2488 (3)0.4952 (5)0.0533 (17)
C140.2223 (3)0.1742 (4)0.5213 (7)0.0773 (19)
H10.748900.526100.384300.0750*
H1A0.997400.353300.911200.1180*
H1B0.984900.459000.822500.1180*
H20.365000.147600.422500.0620*
H2A0.945800.274300.648000.1210*
H2B1.029400.344900.634500.1210*
H3A0.927200.466300.493400.0940*
H3B0.906000.364900.393200.0940*
H40.779900.335300.514400.0650*
H5A0.734700.444900.703600.0870*
H5B0.816500.518200.691900.0870*
H6A0.858000.428500.944000.1010*
H6B0.838300.326700.844400.1010*
H80.520100.478600.318000.0700*
H90.396200.405500.400700.0660*
H110.508800.136700.362700.0580*
H120.633200.209600.281400.0580*
H14A0.176100.206400.571400.1160*
H14B0.252200.122300.596700.1160*
H14C0.193000.145500.412800.1160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0707 (8)0.0406 (6)0.0528 (8)0.0034 (6)0.0085 (6)0.0005 (6)
O10.083 (2)0.0502 (16)0.065 (2)0.0036 (15)0.0264 (17)0.0055 (15)
O20.089 (2)0.0530 (17)0.060 (2)0.0026 (16)0.0121 (17)0.0160 (16)
O30.111 (3)0.0498 (19)0.088 (3)0.0200 (18)0.040 (2)0.0019 (18)
N10.077 (2)0.0364 (18)0.064 (3)0.0082 (17)0.003 (2)0.0040 (18)
N20.064 (2)0.0383 (18)0.051 (2)0.0023 (18)0.0095 (18)0.0030 (16)
C10.078 (4)0.114 (5)0.089 (5)0.001 (3)0.013 (3)0.001 (4)
C20.059 (3)0.135 (5)0.104 (6)0.014 (3)0.009 (3)0.004 (4)
C30.064 (3)0.103 (4)0.068 (4)0.003 (3)0.017 (3)0.006 (3)
C40.056 (3)0.040 (2)0.062 (3)0.002 (2)0.006 (2)0.002 (2)
C50.083 (3)0.070 (3)0.069 (4)0.005 (3)0.022 (3)0.003 (3)
C60.102 (4)0.095 (4)0.055 (4)0.015 (3)0.012 (3)0.005 (3)
C70.062 (3)0.040 (2)0.033 (3)0.001 (2)0.002 (2)0.0018 (18)
C80.079 (3)0.030 (2)0.065 (3)0.000 (2)0.012 (3)0.002 (2)
C90.071 (3)0.038 (2)0.060 (3)0.006 (2)0.021 (2)0.001 (2)
C100.058 (2)0.038 (2)0.029 (2)0.002 (2)0.0040 (19)0.0041 (18)
C110.068 (3)0.031 (2)0.043 (3)0.000 (2)0.002 (2)0.0018 (19)
C120.063 (3)0.036 (2)0.044 (3)0.003 (2)0.007 (2)0.0042 (18)
C130.071 (3)0.051 (3)0.036 (3)0.007 (2)0.007 (2)0.001 (2)
C140.077 (3)0.079 (3)0.081 (4)0.001 (3)0.028 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—O11.422 (3)C11—C121.365 (6)
S1—O21.432 (3)C13—C141.482 (7)
S1—N11.592 (4)C1—H1A0.9700
S1—C71.761 (4)C1—H1B0.9700
O3—C131.209 (5)C2—H2A0.9700
N1—C41.471 (6)C2—H2B0.9700
N2—C101.395 (5)C3—H3A0.9700
N2—C131.347 (5)C3—H3B0.9700
N1—H10.8600C4—H40.9800
N2—H20.8600C5—H5A0.9700
C1—C61.501 (9)C5—H5B0.9700
C1—C21.511 (9)C6—H6A0.9700
C2—C31.520 (8)C6—H6B0.9700
C3—C41.501 (6)C8—H80.9300
C4—C51.503 (7)C9—H90.9300
C5—C61.508 (7)C11—H110.9300
C7—C121.379 (6)C12—H120.9300
C7—C81.381 (6)C14—H14A0.9600
C8—C91.365 (6)C14—H14B0.9600
C9—C101.384 (6)C14—H14C0.9600
C10—C111.381 (6)
O1—S1—O2119.96 (19)C1—C2—H2A109.00
O1—S1—N1108.76 (18)C1—C2—H2B109.00
O1—S1—C7107.04 (18)C3—C2—H2A109.00
O2—S1—N1105.91 (17)C3—C2—H2B109.00
O2—S1—C7106.83 (19)H2A—C2—H2B108.00
N1—S1—C7107.84 (19)C2—C3—H3A109.00
S1—N1—C4122.6 (2)C2—C3—H3B109.00
C10—N2—C13128.9 (3)C4—C3—H3A109.00
C4—N1—H1119.00C4—C3—H3B109.00
S1—N1—H1119.00H3A—C3—H3B108.00
C10—N2—H2116.00N1—C4—H4108.00
C13—N2—H2116.00C3—C4—H4108.00
C2—C1—C6110.2 (5)C5—C4—H4108.00
C1—C2—C3110.9 (5)C4—C5—H5A109.00
C2—C3—C4111.7 (4)C4—C5—H5B109.00
N1—C4—C5110.3 (4)C6—C5—H5A109.00
C3—C4—C5110.9 (4)C6—C5—H5B109.00
N1—C4—C3110.8 (4)H5A—C5—H5B108.00
C4—C5—C6112.2 (4)C1—C6—H6A109.00
C1—C6—C5111.7 (5)C1—C6—H6B109.00
C8—C7—C12118.9 (4)C5—C6—H6A109.00
S1—C7—C8120.0 (3)C5—C6—H6B109.00
S1—C7—C12121.1 (3)H6A—C6—H6B108.00
C7—C8—C9121.2 (4)C7—C8—H8119.00
C8—C9—C10120.2 (4)C9—C8—H8119.00
N2—C10—C9124.2 (4)C8—C9—H9120.00
N2—C10—C11117.7 (3)C10—C9—H9120.00
C9—C10—C11118.2 (4)C10—C11—H11119.00
C10—C11—C12121.8 (4)C12—C11—H11119.00
C7—C12—C11119.7 (4)C7—C12—H12120.00
O3—C13—C14121.4 (4)C11—C12—H12120.00
N2—C13—C14115.3 (4)C13—C14—H14A110.00
O3—C13—N2123.3 (4)C13—C14—H14B109.00
C2—C1—H1A110.00C13—C14—H14C109.00
C2—C1—H1B110.00H14A—C14—H14B109.00
C6—C1—H1A110.00H14A—C14—H14C109.00
C6—C1—H1B110.00H14B—C14—H14C109.00
H1A—C1—H1B108.00
O1—S1—N1—C446.6 (4)C1—C2—C3—C456.3 (6)
O2—S1—N1—C4176.8 (3)C2—C3—C4—N1177.1 (4)
C7—S1—N1—C469.2 (4)C2—C3—C4—C554.4 (6)
O1—S1—C7—C8168.3 (3)N1—C4—C5—C6176.8 (4)
O1—S1—C7—C1210.9 (4)C3—C4—C5—C653.8 (5)
O2—S1—C7—C838.6 (4)C4—C5—C6—C155.2 (6)
O2—S1—C7—C12140.5 (3)S1—C7—C8—C9177.9 (4)
N1—S1—C7—C874.8 (4)C12—C7—C8—C91.3 (7)
N1—S1—C7—C12106.0 (3)S1—C7—C12—C11177.7 (3)
S1—N1—C4—C3100.2 (4)C8—C7—C12—C111.5 (6)
S1—N1—C4—C5136.7 (3)C7—C8—C9—C100.4 (7)
C13—N2—C10—C910.3 (6)C8—C9—C10—N2177.9 (4)
C13—N2—C10—C11171.5 (4)C8—C9—C10—C110.3 (6)
C10—N2—C13—O31.7 (7)N2—C10—C11—C12178.3 (4)
C10—N2—C13—C14176.7 (4)C9—C10—C11—C120.1 (6)
C6—C1—C2—C356.5 (6)C10—C11—C12—C70.8 (6)
C2—C1—C6—C556.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.072.862 (4)153
N2—H2···O2ii0.862.112.970 (4)177
C9—H9···O30.932.282.866 (5)120
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H20N2O3S
Mr296.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.6929 (19), 13.3486 (19), 7.9769 (12)
β (°) 102.387 (7)
V3)1528.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.32 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11442, 3628, 1358
Rint0.110
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.218, 0.94
No. of reflections3628
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.072.862 (4)153
N2—H2···O2ii0.862.112.970 (4)177
C9—H9···O30.932.282.866 (5)120
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

The authors are grateful to the Campus Engineer GCUL, Mr Bilal Ahmad, for providing support services at the Materials Chemistry Laboratory.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2009). Acta Cryst. E65, o3229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaider, Z., Arshad, M. N., Simpson, J., Khan, I. U. & Shafiq, M. (2010). Acta Cryst. E66, o102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMariam, I., Akkurt, M., Sharif, S., Akhtar, N. & Khan, I. U. (2009a). Acta Cryst. E65, o2797.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMariam, I., Akkurt, M., Sharif, S., Haider, S. K. & Khan, I. U. (2009b). Acta Cryst. E65, o1737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationSharif, S., Akkurt, M., Khan, I. U., Salariya, M. A. & Ahmad, S. (2010). Acta Cryst. E66, o73–o74.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o868-o869
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds