organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Benzoyl-N,N-di­ethyl­thio­urea: a monoclinic polymorph

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169_007 Porto, Portugal, bCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169_007 Porto, Portugal, cCICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal, and dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland
*Correspondence e-mail: jnlow111@googlemail.com

(Received 12 March 2010; accepted 13 March 2010; online 20 March 2010)

In the crystal of the title compound, C12H16N2OS, inversion dimers linked by pairs of N—H⋯S hydrogen bonds occur, generating R22(8) loops. The mol­ecules are also linked by weak C—H⋯O hydrogen bonds. The structure is isostructural with that of N′-benzoyl-N,N-diethyl­seleno­urea [Bruce et al. (2007[Bruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647-1653.]). New J. Chem. 31, 1647–1653].

Related literature

For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the structure of the isomorphous compound N,N-diethyl-N′-benzoyl­seleno­urea, see: Bruce et al. (2007[Bruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647-1653.]). For a triclinic polymorph of the title compound, see: Bolte & Fink (2003[Bolte, M. & Fink, L. (2003). Private communication (refcode IJOQED). CCDC, Union Road, Cambridge, England.]). For related thio­ureas, see: Braun et al. (1987[Braun, U., Richter, R., Sieler, J., Beyer, L., Lindqvist, O., Yanovsky, A. I. & Struchkov, Yu. T. (1987). Acta Cryst. C43, 92-95.]). For the preparation of the title compound, see: Beyer et al. (1975[Beyer, L., Hoyer, E., Hennig, H., Kirmse, R. H., Hartmann, H. & Liebscher, J. (1975). J. Prakt. Chem. 317, 829-839.]); Hartmann & Reuther (1973[Hartmann, H. & Reuther, I. (1973). J. Prakt. Chem. 315, 144-148.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2OS

  • Mr = 236.33

  • Monoclinic, C 2/c

  • a = 20.1727 (7) Å

  • b = 8.4717 (3) Å

  • c = 14.8345 (6) Å

  • β = 106.553 (2)°

  • V = 2430.11 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.26 × 0.20 × 0.02 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.995

  • 18425 measured reflections

  • 3704 independent reflections

  • 2940 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 3704 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecule of the title compound, (I) is shown in Fig.1, the bond lengths and angles show no unusual features. The structure is isostructural with that of N,N-diethyl-N'-benzoylselenourea, Bruce et al., 2007. An N3—H3···S2(1-x,1-y,1-z) hydrogen bond links the molecules into R22(8), Bernstein et al., 1995, centrosymetric dimers across the crystallographic centre of symmetry at (0.5, 0.5, 0.5). The bond lengths involved are N3—H3, 0.91 Å, H3···S2, 2.56Å and N3···S2, 3.4595 (11)Å and the angle at H3 is 169°, Fig. 2. The dimers are linked together to form sheets which lie parallel to (-101) by the weak C13—H13..O4(1.5-x,-0.5+y,1.5-z) hydrogen bond with C13—H13B, 0.99 Å, H13B···.O2, 2.59 Å, C13···.O4, 3.3594 (18)Å and an angle at H13B of 135°. This sheet is further re-inforced by a πi···πi interaction involving the phenyl rings at (x, y, z) and (1-x, 2-y, 1-z) which have a centre-to-centre distance of 4.3861 (8) Å, a perpendicular spacing of 3.5511 (6)Å and a slippage of 2.574 Å.

The structure of another polymorph of (1) is deposited as a private communication in the CCDC database, Bolte & Fink (2003). This is reported as crystallising in spacegroup P1 with four molecules in the asymmetric unit. In this compound the molecules are linked into two sets of C4 chains by N—H···O hydrogen bonds. These chains are formed by hydrogen bonded pairs of molecules in which the the N1—C2—N3—C4 torsion angles (our) numbering) are 78.6 (4)° and -80.8 (3)° in one pair and 78.7 (4)° and -81.9 (3)°. In these conformations the O atom is in a favourable position for forming N—H···O hydrogen bonds. In (1) the N1—C2—N3—C4 torsion angle is -71.43 (14)° and the S atom then becomes more accessible as an acceptor for a hydrogen bond and the O atom less so. Related thiourea structures are discussed in Braun et al., (1987).

Related literature top

For graph-set notation, see: Bernstein et al. (1995). For the structure of the isomorphous compound N,N-diethyl-N'-benzoylselenourea, see: Bruce et al. (2007). For a triclinic polymorph of this compound, see: Bolte & Fink (2003). For related thioureas, see: Braun et al. (1987). For the preparation of the title compound, see: Beyer et al. (1975); Hartmann & Reuther (1973).

Experimental top

The title compound was prepared as described by Hartmann & Reuther (1973) and Beyer et al. (1975). The reaction as described in these papers produced yellow plates of (I), which after washing in ethanol at room temperature, were suitable for X-ray diffraction without recrystallisation.

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, C—H(CH2), 0.99 Å. The atom attached to N1 was located on a difference map at a distance of 0.9138Å and was fixed as a riding atom at this distance.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the R22(8) dimer lying across the centre-of symmetry at (0.5,0.5,0.5). Atoms marked with an asterisk,*, are in the molecule at (1-x,1-y,1-z). Hydrogen atoms not involved in the hydrogen bonding are omitted for the sake of clarity.
N'-benzoyl-N,N-diethylthiourea top
Crystal data top
C12H16N2OSF(000) = 1008
Mr = 236.33Dx = 1.292 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.1727 (7) ÅCell parameters from 173 reflections
b = 8.4717 (3) Åθ = 2.0–28.2°
c = 14.8345 (6) ŵ = 0.25 mm1
β = 106.553 (2)°T = 150 K
V = 2430.11 (16) Å3Plate, yellow
Z = 80.26 × 0.20 × 0.02 mm
Data collection top
Bruker SMART APEXII
diffractometer
3704 independent reflections
Radiation source: fine-focus sealed tube2940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 30.5°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2828
Tmin = 0.939, Tmax = 0.995k = 1212
18425 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.041P)2 + 1.4589P]
where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H16N2OSV = 2430.11 (16) Å3
Mr = 236.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.1727 (7) ŵ = 0.25 mm1
b = 8.4717 (3) ÅT = 150 K
c = 14.8345 (6) Å0.26 × 0.20 × 0.02 mm
β = 106.553 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
3704 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2940 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.995Rint = 0.038
18425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
3704 reflectionsΔρmin = 0.21 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.533573 (16)0.44430 (4)0.64948 (2)0.02564 (9)
O40.64408 (5)0.83285 (11)0.66081 (6)0.0268 (2)
N10.66786 (5)0.47946 (12)0.66756 (7)0.0196 (2)
N30.59450 (5)0.64040 (11)0.55563 (7)0.0195 (2)
H30.55630.62210.50600.023*
C20.60315 (6)0.52200 (13)0.62564 (8)0.0187 (2)
C40.61335 (6)0.79534 (14)0.58044 (9)0.0197 (2)
C110.72802 (6)0.52699 (14)0.63579 (9)0.0219 (2)
H11A0.76890.54040.69100.026*
H11B0.71830.62950.60260.026*
C120.74337 (7)0.40383 (16)0.57050 (10)0.0281 (3)
H12A0.75560.30390.60450.042*
H12B0.78210.43950.54800.042*
H12C0.70240.38840.51680.042*
C130.68400 (7)0.36738 (14)0.74658 (9)0.0233 (2)
H13A0.72640.30790.74740.028*
H13B0.64560.29080.73800.028*
C140.69465 (8)0.45271 (17)0.83921 (10)0.0320 (3)
H14A0.73310.52740.84810.048*
H14B0.70540.37590.89070.048*
H14C0.65240.51010.83880.048*
C410.59558 (6)0.91116 (14)0.50117 (9)0.0193 (2)
C420.58864 (6)0.86700 (15)0.40819 (9)0.0226 (2)
H420.59270.75920.39300.027*
C430.57585 (7)0.98072 (17)0.33807 (10)0.0281 (3)
H430.57240.95100.27510.034*
C440.56814 (7)1.13787 (16)0.35958 (10)0.0297 (3)
H440.55891.21530.31130.036*
C450.57385 (6)1.18181 (15)0.45143 (10)0.0275 (3)
H450.56781.28920.46580.033*
C460.58840 (6)1.06976 (14)0.52255 (9)0.0234 (2)
H460.59351.10080.58570.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.02011 (15)0.03108 (17)0.02609 (17)0.00359 (12)0.00715 (12)0.00515 (13)
O40.0307 (5)0.0238 (4)0.0221 (4)0.0002 (4)0.0016 (4)0.0030 (4)
N10.0191 (5)0.0180 (5)0.0211 (5)0.0003 (4)0.0047 (4)0.0009 (4)
N30.0189 (5)0.0180 (5)0.0192 (5)0.0019 (4)0.0016 (4)0.0018 (4)
C20.0202 (5)0.0171 (5)0.0179 (5)0.0012 (4)0.0043 (4)0.0013 (4)
C40.0169 (5)0.0191 (5)0.0232 (6)0.0005 (4)0.0057 (4)0.0003 (4)
C110.0170 (5)0.0203 (6)0.0276 (6)0.0017 (4)0.0051 (5)0.0005 (5)
C120.0293 (6)0.0278 (6)0.0292 (7)0.0031 (5)0.0117 (5)0.0042 (5)
C130.0250 (6)0.0195 (5)0.0228 (6)0.0013 (4)0.0028 (5)0.0037 (5)
C140.0407 (8)0.0303 (7)0.0235 (6)0.0024 (6)0.0070 (6)0.0005 (5)
C410.0146 (5)0.0191 (5)0.0234 (6)0.0005 (4)0.0041 (4)0.0010 (4)
C420.0215 (5)0.0210 (6)0.0247 (6)0.0016 (4)0.0056 (5)0.0004 (5)
C430.0264 (6)0.0322 (7)0.0231 (6)0.0027 (5)0.0027 (5)0.0032 (5)
C440.0242 (6)0.0278 (7)0.0328 (7)0.0012 (5)0.0011 (5)0.0097 (5)
C450.0210 (6)0.0195 (6)0.0393 (7)0.0012 (5)0.0040 (5)0.0030 (5)
C460.0205 (5)0.0202 (6)0.0282 (6)0.0005 (4)0.0050 (5)0.0011 (5)
Geometric parameters (Å, º) top
S2—C21.6767 (12)C13—H13A0.9900
O4—C41.2188 (15)C13—H13B0.9900
N1—C21.3258 (15)C14—H14A0.9800
N1—C131.4712 (15)C14—H14B0.9800
N1—C111.4774 (15)C14—H14C0.9800
N3—C41.3869 (15)C41—C421.3971 (17)
N3—C21.4183 (15)C41—C461.3975 (16)
N3—H30.9138C42—C431.3871 (18)
C4—C411.4946 (17)C42—H420.9500
C11—C121.5145 (17)C43—C441.388 (2)
C11—H11A0.9900C43—H430.9500
C11—H11B0.9900C44—C451.385 (2)
C12—H12A0.9800C44—H440.9500
C12—H12B0.9800C45—C461.3870 (18)
C12—H12C0.9800C45—H450.9500
C13—C141.5129 (18)C46—H460.9500
C2—N1—C13120.93 (10)N1—C13—H13B109.5
C2—N1—C11124.38 (10)C14—C13—H13B109.5
C13—N1—C11114.50 (10)H13A—C13—H13B108.0
C4—N3—C2120.52 (10)C13—C14—H14A109.5
C4—N3—H3118.6C13—C14—H14B109.5
C2—N3—H3111.7H14A—C14—H14B109.5
N1—C2—N3115.79 (10)C13—C14—H14C109.5
N1—C2—S2124.46 (9)H14A—C14—H14C109.5
N3—C2—S2119.75 (8)H14B—C14—H14C109.5
O4—C4—N3122.07 (11)C42—C41—C46119.59 (11)
O4—C4—C41122.66 (11)C42—C41—C4122.35 (11)
N3—C4—C41115.24 (10)C46—C41—C4118.02 (11)
N1—C11—C12110.64 (10)C43—C42—C41119.96 (12)
N1—C11—H11A109.5C43—C42—H42120.0
C12—C11—H11A109.5C41—C42—H42120.0
N1—C11—H11B109.5C42—C43—C44120.19 (13)
C12—C11—H11B109.5C42—C43—H43119.9
H11A—C11—H11B108.1C44—C43—H43119.9
C11—C12—H12A109.5C45—C44—C43120.03 (13)
C11—C12—H12B109.5C45—C44—H44120.0
H12A—C12—H12B109.5C43—C44—H44120.0
C11—C12—H12C109.5C44—C45—C46120.30 (12)
H12A—C12—H12C109.5C44—C45—H45119.9
H12B—C12—H12C109.5C46—C45—H45119.9
N1—C13—C14110.93 (10)C45—C46—C41119.90 (12)
N1—C13—H13A109.5C45—C46—H46120.0
C14—C13—H13A109.5C41—C46—H46120.0
C13—N1—C2—N3174.96 (10)O4—C4—C41—C42151.78 (12)
C11—N1—C2—N310.38 (16)N3—C4—C41—C4226.09 (16)
C13—N1—C2—S25.74 (16)O4—C4—C41—C4625.75 (17)
C11—N1—C2—S2168.92 (9)N3—C4—C41—C46156.38 (10)
C4—N3—C2—N171.43 (14)C46—C41—C42—C431.06 (17)
C4—N3—C2—S2109.23 (11)C4—C41—C42—C43176.44 (11)
C2—N3—C4—O47.58 (17)C41—C42—C43—C441.66 (19)
C2—N3—C4—C41174.54 (10)C42—C43—C44—C450.60 (19)
C2—N1—C11—C1293.09 (14)C43—C44—C45—C461.07 (19)
C13—N1—C11—C1281.88 (13)C44—C45—C46—C411.66 (18)
C2—N1—C13—C1488.47 (14)C42—C41—C46—C450.59 (17)
C11—N1—C13—C1496.37 (13)C4—C41—C46—C45178.19 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S2i0.912.563.4595 (11)169
C13—H13A···O4ii0.992.593.3594 (18)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H16N2OS
Mr236.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)20.1727 (7), 8.4717 (3), 14.8345 (6)
β (°) 106.553 (2)
V3)2430.11 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.26 × 0.20 × 0.02
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.939, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
18425, 3704, 2940
Rint0.038
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections3704
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009).

 

Acknowledgements

LRG thanks Fundação para o Ensino e Cultura Fernando Pessoa for support.

References

First citationBernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeyer, L., Hoyer, E., Hennig, H., Kirmse, R. H., Hartmann, H. & Liebscher, J. (1975). J. Prakt. Chem. 317, 829–839.  CrossRef CAS Web of Science Google Scholar
First citationBolte, M. & Fink, L. (2003). Private communication (refcode IJOQED). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationBraun, U., Richter, R., Sieler, J., Beyer, L., Lindqvist, O., Yanovsky, A. I. & Struchkov, Yu. T. (1987). Acta Cryst. C43, 92–95.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647–1653.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHartmann, H. & Reuther, I. (1973). J. Prakt. Chem. 315, 144–148.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds