organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1-(1,2-propadien­yl)-3-(2-propyn­yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bUnité de Catalyse et de Chimie du Solide, Ecole Nationale Supérieure de Chimie de Lille, Lille, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 February 2010; accepted 1 March 2010; online 6 March 2010)

The reaction of propargyl bromide and 6-bromo-1,3-dihydro­imidazo[4,5-b]pyridin-2-one in refluxing dimethyl­formamide yields the title compound, C12H8BrN3O, which features nitro­gen-bound propadienyl and propynyl substituents. The imidazolopyridine fused ring is planar (r.m.s. deviation = 0.012 Å); the propadienyl chain is coplanar with the fused ring as it is conjugated with it, whereas the propynyl chain is not as the nitro­gen-bound C atom is a methyl­ene linkage. The acetyl­enic H atom is hydrogen bonded to the carbonyl O atom of an adjacent mol­ecule, forming a helical chain runnning along the b axis.

Related literature

For the crystal structures of other imidazo[4,5-b]pyridin-2-ones, see: Kourafalos et al. (2002[Kourafalos, V. N., Marakos, P., Pouli, N., Terzis, A. & Townsend, L. B. (2002). Heterocycles, 57, 2335-2343.]); Meanwell et al. (1995[Meanwell, N. A., Sit, S. Y., Gao, J. N., Wong, H. S., Gao, Q., St Laurent, D. R. & Balasubramanian, N. (1995). J. Org. Chem. 50, 1565-1582.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8BrN3O

  • Mr = 290.12

  • Monoclinic, P 21 /n

  • a = 9.6369 (4) Å

  • b = 9.3086 (4) Å

  • c = 13.5481 (5) Å

  • β = 99.123 (2)°

  • V = 1199.97 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 293 K

  • 0.55 × 0.35 × 0.30 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.256, Tmax = 0.428

  • 51411 measured reflections

  • 3393 independent reflections

  • 2577 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.087

  • S = 1.02

  • 3393 reflections

  • 166 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.94 (1) 2.22 (1) 3.161 (3) 173 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of other imidazo[4,5-b]pyridin-2-ones, see: Kourafalos et al. (2002); Meanwell et al. (1995).

Experimental top

To a solution of 6-bromo-1,3-dihydro-imidazo[4,5-b]pyridin-2-one (1 mmol), potassium carbonate (4 mmol) and tetra-n-butylammonium bromide (0.1 mmol) in DMF (20 ml) was added propargyl bromide (2.5 mmol). The solution was refluxed for 48 hours. After completion of the reaction (as monitored byTLC), the salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using an ethyl acetate/hexane (1/1) mixture as eluent. Slow evaporation of the solvent furnished colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The terminal acetylenic and allenic H-atoms were located in a difference Fourier map, and were refined with a distance restraint of C–H 0.95±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H8BrN3O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
6-Bromo-1-(1,2-propadienyl)-3-(2-propynyl)-1H- imidazo[4,5-b]pyridin-2(3H)-one top
Crystal data top
C12H8BrN3OF(000) = 576
Mr = 290.12Dx = 1.606 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9975 reflections
a = 9.6369 (4) Åθ = 2.4–25.6°
b = 9.3086 (4) ŵ = 3.41 mm1
c = 13.5481 (5) ÅT = 293 K
β = 99.123 (2)°Irregular, colorless
V = 1199.97 (8) Å30.55 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
3393 independent reflections
Radiation source: fine-focus sealed tube2577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 29.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.256, Tmax = 0.428k = 1212
51411 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4635P]
where P = (Fo2 + 2Fc2)/3
3393 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.49 e Å3
3 restraintsΔρmin = 0.63 e Å3
Crystal data top
C12H8BrN3OV = 1199.97 (8) Å3
Mr = 290.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6369 (4) ŵ = 3.41 mm1
b = 9.3086 (4) ÅT = 293 K
c = 13.5481 (5) Å0.55 × 0.35 × 0.30 mm
β = 99.123 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
3393 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2577 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 0.428Rint = 0.040
51411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.49 e Å3
3393 reflectionsΔρmin = 0.63 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40648 (3)0.39876 (3)0.231050 (17)0.06785 (11)
O10.49655 (17)0.95432 (17)0.64205 (11)0.0577 (4)
N10.21863 (16)0.64109 (19)0.42594 (13)0.0453 (4)
N20.54742 (15)0.78896 (16)0.52363 (11)0.0395 (3)
N30.32605 (16)0.81244 (17)0.54674 (11)0.0417 (3)
C10.2477 (2)0.5495 (2)0.35479 (15)0.0490 (4)
H10.17440.49720.31880.059*
C20.3815 (2)0.53039 (19)0.33326 (13)0.0435 (4)
C30.4981 (2)0.60309 (19)0.38454 (13)0.0399 (4)
H30.58870.58950.37080.048*
C40.46792 (17)0.69616 (18)0.45684 (12)0.0346 (3)
C50.32815 (18)0.71031 (18)0.47294 (12)0.0365 (3)
C60.6938 (2)0.8150 (2)0.53701 (16)0.0503 (5)
H60.73020.88280.58450.060*
C70.7806 (2)0.7510 (2)0.48776 (17)0.0529 (5)
C80.8709 (3)0.6872 (4)0.4413 (2)0.0750 (8)
H810.916 (3)0.602 (2)0.467 (3)0.106 (12)*
H820.890 (3)0.722 (3)0.3788 (13)0.089 (10)*
C90.4605 (2)0.8628 (2)0.57909 (14)0.0416 (4)
C100.2020 (2)0.8584 (2)0.58740 (16)0.0509 (5)
H10A0.12520.87360.53280.061*
H10B0.22180.94940.62170.061*
C110.1586 (2)0.7538 (2)0.65707 (15)0.0521 (5)
C120.1208 (3)0.6715 (3)0.71186 (19)0.0694 (7)
H120.093 (3)0.601 (2)0.7550 (18)0.088 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0918 (2)0.05653 (15)0.05116 (14)0.01376 (12)0.00107 (12)0.01710 (9)
O10.0645 (9)0.0499 (8)0.0563 (9)0.0031 (7)0.0024 (7)0.0158 (7)
N10.0357 (8)0.0481 (9)0.0513 (9)0.0027 (7)0.0046 (7)0.0022 (7)
N20.0367 (7)0.0396 (8)0.0417 (7)0.0023 (6)0.0050 (6)0.0021 (6)
N30.0417 (8)0.0425 (8)0.0431 (8)0.0011 (6)0.0133 (6)0.0014 (6)
C10.0469 (10)0.0461 (10)0.0504 (10)0.0050 (8)0.0035 (8)0.0017 (8)
C20.0555 (11)0.0369 (9)0.0362 (8)0.0034 (8)0.0016 (7)0.0014 (7)
C30.0408 (9)0.0411 (9)0.0385 (8)0.0031 (7)0.0085 (7)0.0024 (7)
C40.0351 (8)0.0350 (8)0.0334 (7)0.0008 (6)0.0051 (6)0.0060 (6)
C50.0386 (8)0.0350 (8)0.0364 (8)0.0006 (7)0.0079 (6)0.0057 (6)
C60.0381 (9)0.0515 (11)0.0592 (12)0.0078 (8)0.0015 (8)0.0032 (9)
C70.0343 (9)0.0597 (12)0.0628 (12)0.0064 (9)0.0017 (9)0.0098 (10)
C80.0396 (11)0.101 (2)0.0867 (19)0.0039 (13)0.0176 (12)0.0060 (17)
C90.0474 (10)0.0370 (9)0.0402 (9)0.0029 (7)0.0061 (7)0.0014 (7)
C100.0512 (11)0.0491 (11)0.0570 (12)0.0097 (9)0.0224 (9)0.0029 (9)
C110.0510 (11)0.0614 (12)0.0461 (10)0.0007 (9)0.0149 (8)0.0033 (9)
C120.0748 (16)0.0808 (18)0.0555 (13)0.0120 (14)0.0197 (12)0.0087 (12)
Geometric parameters (Å, º) top
Br1—C21.8928 (18)C3—C41.373 (2)
O1—C91.216 (2)C3—H30.9300
N1—C51.312 (2)C4—C51.404 (2)
N1—C11.349 (3)C6—C71.295 (3)
N2—C41.390 (2)C6—H60.9300
N2—C91.393 (2)C7—C81.296 (4)
N2—C61.414 (2)C8—H810.95 (1)
N3—C51.382 (2)C8—H820.95 (1)
N3—C91.382 (2)C10—C111.463 (3)
N3—C101.458 (2)C10—H10A0.9700
C1—C21.378 (3)C10—H10B0.9700
C1—H10.9300C11—C121.164 (3)
C2—C31.398 (3)C12—H120.94 (1)
C5—N1—C1114.50 (16)N1—C5—C4126.59 (17)
C4—N2—C9109.96 (14)N3—C5—C4107.53 (15)
C4—N2—C6128.72 (16)C7—C6—N2124.62 (19)
C9—N2—C6121.29 (16)C7—C6—H6117.7
C5—N3—C9110.03 (15)N2—C6—H6117.7
C5—N3—C10125.63 (16)C8—C7—C6178.0 (3)
C9—N3—C10124.33 (16)C7—C8—H81121 (2)
N1—C1—C2122.72 (18)C7—C8—H82120.7 (19)
N1—C1—H1118.6H81—C8—H82118 (3)
C2—C1—H1118.6O1—C9—N3127.55 (18)
C1—C2—C3122.49 (17)O1—C9—N2126.48 (18)
C1—C2—Br1118.07 (14)N3—C9—N2105.97 (15)
C3—C2—Br1119.43 (14)N3—C10—C11112.56 (17)
C4—C3—C2114.56 (16)N3—C10—H10A109.1
C4—C3—H3122.7C11—C10—H10A109.1
C2—C3—H3122.7N3—C10—H10B109.1
C3—C4—N2134.39 (16)C11—C10—H10B109.1
C3—C4—C5119.12 (16)H10A—C10—H10B107.8
N2—C4—C5106.49 (15)C12—C11—C10178.4 (3)
N1—C5—N3125.87 (16)C11—C12—H12177.2 (19)
C5—N1—C1—C20.0 (3)C3—C4—C5—N10.9 (3)
N1—C1—C2—C30.9 (3)N2—C4—C5—N1179.58 (17)
N1—C1—C2—Br1179.76 (15)C3—C4—C5—N3178.29 (15)
C1—C2—C3—C40.8 (3)N2—C4—C5—N31.26 (18)
Br1—C2—C3—C4179.81 (12)C4—N2—C6—C71.4 (3)
C2—C3—C4—N2179.36 (18)C9—N2—C6—C7179.6 (2)
C2—C3—C4—C50.0 (2)C5—N3—C9—O1178.90 (19)
C9—N2—C4—C3178.04 (18)C10—N3—C9—O12.7 (3)
C6—N2—C4—C30.3 (3)C5—N3—C9—N20.2 (2)
C9—N2—C4—C51.41 (19)C10—N3—C9—N2178.17 (16)
C6—N2—C4—C5179.75 (17)C4—N2—C9—O1178.10 (19)
C1—N1—C5—N3178.16 (17)C6—N2—C9—O10.4 (3)
C1—N1—C5—C40.9 (3)C4—N2—C9—N31.00 (19)
C9—N3—C5—N1179.84 (17)C6—N2—C9—N3179.49 (16)
C10—N3—C5—N11.8 (3)C5—N3—C10—C1176.4 (2)
C9—N3—C5—C40.67 (19)C9—N3—C10—C11101.7 (2)
C10—N3—C5—C4179.00 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.94 (1)2.22 (1)3.161 (3)173 (2)
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H8BrN3O
Mr290.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6369 (4), 9.3086 (4), 13.5481 (5)
β (°) 99.123 (2)
V3)1199.97 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.55 × 0.35 × 0.30
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.256, 0.428
No. of measured, independent and
observed [I > 2σ(I)] reflections
51411, 3393, 2577
Rint0.040
(sin θ/λ)max1)0.697
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.02
No. of reflections3393
No. of parameters166
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.63

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.94 (1)2.22 (1)3.161 (3)173 (2)
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKourafalos, V. N., Marakos, P., Pouli, N., Terzis, A. & Townsend, L. B. (2002). Heterocycles, 57, 2335–2343.  CAS Google Scholar
First citationMeanwell, N. A., Sit, S. Y., Gao, J. N., Wong, H. S., Gao, Q., St Laurent, D. R. & Balasubramanian, N. (1995). J. Org. Chem. 50, 1565–1582.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds