organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium (4-chloro­phen­yl)guanidinium dichloride hemihydrate

aChemistry and Chemical Engineering Department, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China
*Correspondence e-mail: dongthc2009@163.com

(Received 24 February 2010; accepted 1 March 2010; online 10 March 2010)

In the title hydrated molecular salt, C6H7ClN+·C7H9ClN3+·2Cl·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds form layers perpendicular to the ac plane in which both the water mol­ecule and the chloride anion are involved in connecting the layers into a three-dimensional structure.

Related literature

For applications of guanidine-containing compounds, see: Yonehara & Otake (1966[Yonehara, H. & Otake, N. (1966). Tetrahedron Lett. 32, 3785-3791.]); Berlinck (1995[Berlinck, R. G. S. (1995). Prog. Chem. Org. Nat. Prod. 66, 119-295.]); Gobbi & Frenking (1993[Gobbi, M. & Frenking, G. (1993). J. Am. Chem. Soc. 115, 2362-2372.]). For related structures, see: Ploug-Sørenson & Andersen 1985[Ploug-Sørenson, G. & Andersen, E. K. (1985). Acta Cryst. C41, 613-615.]; Kolev et al. (1997[Kolev, Ts., Stahl, R., Preut, H., Bleckmann, P. & Radomirska, V. (1997). Z. Kristallogr. New Cryst. Struct. 212, 415-416.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276-o280.]); Smith et al. (2005[Smith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. C61, o105-o109.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·C7H9ClN3+·2Cl·0.5H2O

  • Mr = 379.11

  • Monoclinic, C 2/c

  • a = 41.297 (8) Å

  • b = 4.2089 (8) Å

  • c = 23.695 (5) Å

  • β = 120.164 (2)°

  • V = 3560.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 298 K

  • 0.51 × 0.50 × 0.34 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.727, Tmax = 0.805

  • 8167 measured reflections

  • 3078 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.03

  • 3078 reflections

  • 211 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H14A⋯Cl1i 0.82 (2) 2.36 (2) 3.1797 (17) 177 (3)
N2—H2A⋯Cl2i 0.86 2.54 3.324 (2) 152
N3—H3A⋯Cl2i 0.86 2.48 3.281 (2) 155
N4—H4D⋯Cl2ii 0.82 (6) 2.39 (5) 3.185 (3) 164 (5)
N2—H2B⋯Cl2iii 0.86 2.62 3.2457 (19) 131
N4—H4A⋯Cl1iv 0.93 (6) 2.27 (6) 3.158 (3) 160 (5)
N1—H1A⋯Cl1v 0.86 2.52 3.283 (2) 148
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y-1, z; (v) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The guanidine-containing compounds have been employed as anti-microbials and fungicides on a considerable scale(Yonehara & Otake, 1966). The drugs containing guanidine framework are not only easy to transport(Berlinck, 1995), but also make the functions of absorption and osmosis more selective due to the good solubility of their various acid salts in aqueous solution(Gobbi & Frenking, 1993). We report here the cocrystal structure of title compound.

Title compound crystallizes with one 4-chloropenylguanidinium cation , one 4-chloroanilinium cation, two chloride anion and half water molecular in the asymmetric unit (Fig. 1). All bond lengths and angles are normal (Ploug-Sørenson & Andersen, 1985; Kolev et al., 1997; Glidewell et al., 2005; Smith et al., 2005). The forces between cations and anions consist of hydrogen bonding and ion-pairing. Intermolecular N—H···Cl and O—H···Cl hydrogen bonds form layers perpendicular to the ac plane in which both the water molecule and the chloride anion are involved in structure extension (Table 1).

Related literature top

For applications of guanidine-containing compounds, see: Yonehara & Otake (1966); Berlinck (1995); Gobbi & Frenking (1993). For related structures, see: Ploug-Sørenson & Andersen 1985; Kolev et al. (1997); Glidewell et al. (2005); Smith et al. (2005).

Experimental top

The 4-chlorophenylguanidine (0.01 mol) was added to a solution of 4-chlorobenzenamine (0.01 mol) in ethanol (20 ml) and stirred half hour at room temperature. The mixture was adjusted to pH 2-3 with concentrated hydrochloric acid, and the desired products then precipitated, which was collected by filtration. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol and water (v/v 1:1) at room temperature for one week.

Refinement top

Hydrogen atoms bonded to O and 4-chloroanilinium N were located by difference methods and their positional and isotropic displacement parameters were refined but these were constrained in the final refinement cycles. H atoms bonded to C and 4-chlorophenylguanidinium N atoms were treated as riding atoms, with C—H distances of 0.93 Å and N—H distances of 0.86 Å and Uiso(H) values of 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
4-Chloroanilinium (4-chlorophenyl)guanidinium dichloride hemihydrate top
Crystal data top
C6H7ClN+·C7H9ClN3+·2Cl·0.5H2OF(000) = 1560
Mr = 379.11Dx = 1.414 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2794 reflections
a = 41.297 (8) Åθ = 2.6–24.3°
b = 4.2089 (8) ŵ = 0.67 mm1
c = 23.695 (5) ÅT = 298 K
β = 120.164 (2)°Block, colorless
V = 3560.8 (12) Å30.51 × 0.50 × 0.34 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3078 independent reflections
Radiation source: fine-focus sealed tube2495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4548
Tmin = 0.727, Tmax = 0.805k = 54
8167 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.9195P]
where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C6H7ClN+·C7H9ClN3+·2Cl·0.5H2OV = 3560.8 (12) Å3
Mr = 379.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 41.297 (8) ŵ = 0.67 mm1
b = 4.2089 (8) ÅT = 298 K
c = 23.695 (5) Å0.51 × 0.50 × 0.34 mm
β = 120.164 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3078 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2495 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.805Rint = 0.046
8167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3078 reflectionsΔρmin = 0.22 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.073762 (19)0.49131 (14)0.32708 (3)0.0542 (2)
Cl20.062005 (17)0.51049 (14)0.49527 (3)0.0496 (2)
Cl30.20900 (2)0.7771 (2)0.72411 (4)0.0787 (3)
Cl40.26245 (2)0.1128 (3)0.59514 (5)0.0943 (3)
O10.00000.9261 (7)0.75000.0535 (6)
H14A0.0188 (6)0.815 (7)0.7317 (14)0.074 (10)*
N10.06411 (5)1.1656 (6)0.69506 (9)0.0560 (6)
H1A0.06481.17450.73190.067*
N20.02658 (6)1.2676 (6)0.58408 (9)0.0583 (6)
H2A0.00511.32060.55190.070*
H2B0.04501.23240.57770.070*
N30.00277 (6)1.2948 (6)0.65192 (10)0.0614 (6)
H3A0.01861.34770.61930.074*
H3B0.00551.27770.69020.074*
N40.09760 (8)0.0049 (7)0.43996 (17)0.0644 (7)
C10.19749 (9)0.0652 (8)0.48977 (15)0.0711 (8)
H1B0.21220.14070.47310.085*
C20.15937 (8)0.0937 (7)0.45442 (14)0.0649 (7)
H2C0.14800.19090.41370.078*
C30.13796 (7)0.0206 (5)0.47893 (13)0.0473 (6)
C40.15458 (8)0.1594 (7)0.53908 (13)0.0604 (7)
H4C0.13990.23530.55570.073*
C50.19272 (8)0.1877 (7)0.57510 (13)0.0649 (7)
H5A0.20400.28200.61610.078*
C60.21393 (8)0.0766 (6)0.55030 (13)0.0569 (7)
C70.16604 (7)0.8951 (6)0.71382 (12)0.0500 (6)
C80.16519 (8)1.0740 (6)0.76169 (13)0.0572 (7)
H8A0.18731.13400.79880.069*
C90.13103 (7)1.1630 (7)0.75378 (12)0.0567 (7)
H9A0.13011.28380.78580.068*
C100.09795 (6)1.0742 (6)0.69845 (11)0.0429 (5)
C110.09949 (7)0.8967 (6)0.65113 (11)0.0482 (6)
H11A0.07750.83640.61370.058*
C120.13380 (7)0.8084 (6)0.65932 (13)0.0522 (6)
H12A0.13480.68860.62730.063*
C130.03129 (7)1.2401 (6)0.64323 (11)0.0455 (6)
H4D0.0856 (16)0.130 (14)0.446 (3)0.17 (2)*
H4B0.0890 (13)0.130 (12)0.457 (2)0.14 (2)*
H4A0.0872 (15)0.110 (14)0.400 (3)0.18 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0552 (4)0.0610 (4)0.0393 (4)0.0094 (3)0.0185 (3)0.0031 (3)
Cl20.0461 (4)0.0655 (4)0.0406 (3)0.0053 (3)0.0243 (3)0.0064 (3)
Cl30.0503 (4)0.1045 (6)0.0858 (6)0.0173 (4)0.0377 (4)0.0099 (5)
Cl40.0518 (5)0.1166 (7)0.0872 (6)0.0050 (5)0.0146 (4)0.0111 (5)
O10.0472 (16)0.0582 (16)0.0483 (15)0.0000.0191 (13)0.000
N10.0399 (12)0.0949 (17)0.0320 (10)0.0124 (12)0.0172 (9)0.0028 (11)
N20.0430 (12)0.0954 (17)0.0388 (11)0.0095 (11)0.0223 (10)0.0160 (11)
N30.0434 (12)0.1009 (18)0.0432 (11)0.0155 (12)0.0241 (10)0.0109 (12)
N40.0506 (15)0.0518 (14)0.081 (2)0.0028 (12)0.0254 (15)0.0001 (14)
C10.0595 (19)0.093 (2)0.0647 (18)0.0002 (17)0.0344 (16)0.0173 (17)
C20.0610 (18)0.0809 (19)0.0507 (16)0.0073 (16)0.0266 (14)0.0191 (15)
C30.0495 (15)0.0382 (12)0.0510 (14)0.0007 (10)0.0230 (12)0.0069 (11)
C40.0640 (18)0.0716 (18)0.0497 (15)0.0065 (15)0.0315 (14)0.0041 (14)
C50.0687 (19)0.0749 (19)0.0416 (14)0.0009 (16)0.0207 (14)0.0103 (13)
C60.0506 (15)0.0593 (16)0.0502 (15)0.0015 (13)0.0174 (13)0.0017 (13)
C70.0422 (14)0.0550 (14)0.0540 (15)0.0063 (12)0.0251 (12)0.0086 (13)
C80.0439 (15)0.0668 (17)0.0461 (15)0.0004 (13)0.0116 (12)0.0033 (13)
C90.0479 (15)0.0759 (18)0.0364 (13)0.0103 (14)0.0137 (12)0.0065 (13)
C100.0394 (13)0.0513 (13)0.0351 (12)0.0064 (11)0.0167 (11)0.0063 (10)
C110.0423 (14)0.0536 (13)0.0414 (13)0.0010 (12)0.0155 (11)0.0049 (11)
C120.0545 (16)0.0547 (15)0.0514 (15)0.0049 (12)0.0295 (13)0.0057 (12)
C130.0404 (13)0.0579 (14)0.0382 (12)0.0012 (11)0.0197 (11)0.0034 (11)
Geometric parameters (Å, º) top
Cl3—C71.738 (2)C1—H1B0.9300
Cl4—C61.740 (3)C2—C31.366 (4)
O1—H14A0.820 (17)C2—H2C0.9300
N1—C131.331 (3)C3—C41.364 (4)
N1—C101.412 (3)C4—C51.369 (4)
N1—H1A0.8600C4—H4C0.9300
N2—C131.320 (3)C5—C61.359 (4)
N2—H2A0.8600C5—H5A0.9300
N2—H2B0.8600C7—C121.359 (4)
N3—C131.314 (3)C7—C81.377 (4)
N3—H3A0.8600C8—C91.379 (4)
N3—H3B0.8600C8—H8A0.9300
N4—C31.448 (4)C9—C101.387 (3)
N4—H4D0.82 (6)C9—H9A0.9300
N4—H4B0.84 (5)C10—C111.375 (3)
N4—H4A0.93 (6)C11—C121.381 (3)
C1—C21.367 (4)C11—H11A0.9300
C1—C61.377 (4)C12—H12A0.9300
C13—N1—C10129.5 (2)C6—C5—C4119.4 (3)
C13—N1—H1A115.2C6—C5—H5A120.3
C10—N1—H1A115.2C4—C5—H5A120.3
C13—N2—H2A120.0C5—C6—C1120.8 (3)
C13—N2—H2B120.0C5—C6—Cl4120.0 (2)
H2A—N2—H2B120.0C1—C6—Cl4119.2 (2)
C13—N3—H3A120.0C12—C7—C8120.8 (2)
C13—N3—H3B120.0C12—C7—Cl3120.0 (2)
H3A—N3—H3B120.0C8—C7—Cl3119.2 (2)
C3—N4—H4D116 (4)C7—C8—C9119.0 (2)
C3—N4—H4B112 (3)C7—C8—H8A120.5
H4D—N4—H4B85 (5)C9—C8—H8A120.5
C3—N4—H4A119 (3)C8—C9—C10120.6 (2)
H4D—N4—H4A120 (5)C8—C9—H9A119.7
H4B—N4—H4A95 (4)C10—C9—H9A119.7
C2—C1—C6119.3 (3)C11—C10—C9119.3 (2)
C2—C1—H1B120.3C11—C10—N1123.5 (2)
C6—C1—H1B120.3C9—C10—N1117.2 (2)
C3—C2—C1120.0 (3)C10—C11—C12119.8 (2)
C3—C2—H2C120.0C10—C11—H11A120.1
C1—C2—H2C120.0C12—C11—H11A120.1
C4—C3—C2120.1 (3)C7—C12—C11120.5 (2)
C4—C3—N4120.8 (3)C7—C12—H12A119.7
C2—C3—N4119.1 (3)C11—C12—H12A119.7
C3—C4—C5120.4 (2)N3—C13—N2119.1 (2)
C3—C4—H4C119.8N3—C13—N1118.3 (2)
C5—C4—H4C119.8N2—C13—N1122.6 (2)
C6—C1—C2—C30.6 (5)C7—C8—C9—C100.1 (4)
C1—C2—C3—C40.9 (4)C8—C9—C10—C110.3 (4)
C1—C2—C3—N4178.4 (3)C8—C9—C10—N1177.9 (2)
C2—C3—C4—C50.5 (4)C13—N1—C10—C1134.1 (4)
N4—C3—C4—C5178.8 (3)C13—N1—C10—C9147.8 (3)
C3—C4—C5—C60.1 (4)C9—C10—C11—C120.2 (4)
C4—C5—C6—C10.4 (4)N1—C10—C11—C12177.8 (2)
C4—C5—C6—Cl4179.6 (2)C8—C7—C12—C110.4 (4)
C2—C1—C6—C50.0 (5)Cl3—C7—C12—C11179.0 (2)
C2—C1—C6—Cl4180.0 (2)C10—C11—C12—C70.1 (4)
C12—C7—C8—C90.4 (4)C10—N1—C13—N3174.8 (3)
Cl3—C7—C8—C9179.0 (2)C10—N1—C13—N26.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H14A···Cl1i0.82 (2)2.36 (2)3.1797 (17)177 (3)
N2—H2A···Cl2i0.862.543.324 (2)152
N3—H3A···Cl2i0.862.483.281 (2)155
N4—H4D···Cl2ii0.82 (6)2.39 (5)3.185 (3)164 (5)
N2—H2B···Cl2iii0.862.623.2457 (19)131
N4—H4A···Cl1iv0.93 (6)2.27 (6)3.158 (3)160 (5)
N1—H1A···Cl1v0.862.523.283 (2)148
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y1, z; (v) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·C7H9ClN3+·2Cl·0.5H2O
Mr379.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)41.297 (8), 4.2089 (8), 23.695 (5)
β (°) 120.164 (2)
V3)3560.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.51 × 0.50 × 0.34
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.727, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
8167, 3078, 2495
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.03
No. of reflections3078
No. of parameters211
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H14A···Cl1i0.820 (17)2.361 (17)3.1797 (17)177 (3)
N2—H2A···Cl2i0.862.543.324 (2)152.1
N3—H3A···Cl2i0.862.483.281 (2)154.8
N4—H4D···Cl2ii0.82 (6)2.39 (5)3.185 (3)164 (5)
N2—H2B···Cl2iii0.862.623.2457 (19)130.7
N4—H4A···Cl1iv0.93 (6)2.27 (6)3.158 (3)160 (5)
N1—H1A···Cl1v0.862.523.283 (2)147.9
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y1, z; (v) x, y+2, z+1/2.
 

References

First citationBerlinck, R. G. S. (1995). Prog. Chem. Org. Nat. Prod. 66, 119–295.  CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276–o280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGobbi, M. & Frenking, G. (1993). J. Am. Chem. Soc. 115, 2362–2372.  CrossRef CAS Web of Science Google Scholar
First citationKolev, Ts., Stahl, R., Preut, H., Bleckmann, P. & Radomirska, V. (1997). Z. Kristallogr. New Cryst. Struct. 212, 415–416.  CAS Google Scholar
First citationPloug-Sørenson, G. & Andersen, E. K. (1985). Acta Cryst. C41, 613–615.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. C61, o105–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYonehara, H. & Otake, N. (1966). Tetrahedron Lett. 32, 3785–3791.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds