organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′-Amino-1,3-dioxo-2′,3′-di­hydro-7′H-spiro­[indane-2,7′-thieno[3,2-b]pyran]-6′-carbo­nitrile 1′,1′-dioxide

aSchool of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bSchool of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: wangsh200912@163.com

(Received 7 March 2010; accepted 17 March 2010; online 24 March 2010)

The title compound, C16H10N2O5S, was synthesized via the condesation of dihydro­thio­phen-3(2H)-one 1,1-dioxide, 1H-indene-1,2,3-trione and malononitrile in ethanol. The 2,3-dihydro­thio­phene 1,1-dioxide and pyran rings adopt envelope conformations. The mean planes through the planar part of the pyran ring and the benzene ring are nearly perpendicular, forming a dihedral angle of 88.40 (7)°. The crystal packing is stabilized by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds with the sulfone O atom and the cyano N atom acting as acceptors.

Related literature

For the uses of thienopyranyl compounds such as thieno[3,2-b]pyran derivatives as anti­viral agents and α-2C adreno­receptor agonists, see: Chao et al. (2009[Chao, J. H., Zheng, J. Y. & Aslanian, R. G. (2009). WO Patent No. 2009020578.]); Friary et al. (1991[Friary, R. J., Schwerdt, J. H. & Ganguly, A. K. (1991). US Patent No. 5 034 531.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N2O5S

  • Mr = 342.32

  • Monoclinic, P 21 /c

  • a = 9.436 (3) Å

  • b = 10.602 (3) Å

  • c = 14.777 (4) Å

  • β = 99.137 (4)°

  • V = 1459.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 116 K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.933, Tmax = 0.956

  • 9619 measured reflections

  • 2549 independent reflections

  • 1985 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.127

  • S = 1.00

  • 2549 reflections

  • 226 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯N2i 0.89 (1) 2.23 (1) 3.067 (3) 157 (2)
N1—H1D⋯O2ii 0.89 (1) 2.03 (1) 2.865 (2) 156 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thienopyranyl compounds, such as thieno [3,2-b]pyran derivatives, can be used as antiviral agents (Friary et al., 1991) and α-2 C adrenoreceptor agonists ( Chao et al., 2009). This led us to pay attention to the synthesis and bioactivity of these compounds. During the synthesis of thieno[3,2-b]pyran derivatives, the title compound, (I) was isolated and its structure was determined by X-ray diffraction. Here we report its crystal structure.

The molecular structure of (I) is shown in Fig. 1. In the molecular structure, the thiophene ring is in envelope conformation, for the deviation of C1 from the C2/C3/C4/S1 plane is 0.364 (3)Å with r.m.s. of 0.0056.

The pyran ring adopts an envelope conformation with atome C5 deviating from the C3/C4/C6/C7/O5 plane 0.228 (3) Å. According to Cremer & Pople analysis (Cremer & Pople, 1975), the puckering amplitude (Q) is 0.168 (2) Å. Its θ and ϕ are 103.2 (7) and 349.6 (7)°, respectively. The weighted planes of the pyran and phenyl rings are nearly perpendicular, with the dihedral angle between them 88.40 (7)°. The five membered ring of 1H-indene-1,3(2H)-dione fragment adopts an envelope conformation, for the deviation of C5 from the C9/C10/C15/C16 plane is 0.149 (3)Å with r.m.s. of 0.0033. The crystal packing is stabilized by intermolecular hydrogen bonds: N1—H1C···N2, N1—H1D···O2(Fig.2 & Table 1).

Related literature top

For the uses of thienopyranyl compounds such as thieno [3,2-b]pyran derivatives can be used as antiviral agents and α-2 C adrenoreceptor agonists, see: Chao et al. (2009); Friary et al. (1991). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by the reaction of dihydrothiophen-3(2H)-one-1,1-dioxide (1 mmol), 1H-indene-1,2,3-trione (1 mmol) and malononitrile (1 mmol) in 10 ml ethanol under reluxing until completion (monitored by TLC). Cooling the reaction mixture slowly gave single crystals suitable for X-ray diffraction.

Refinement top

The hydrogen atoms bonded to the nitrogen atom were positioned from a Fourier difference map. The N—H bond lengths were restrained to 0.90Å with an estimated standard deviation 0.01. The distance between H1C and H1D was restrained to 1.50Å with an estimated standard deviation 0.01. Other H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
5'-Amino-1,3-dioxo-2',3'-dihydro-7'H-spiro[indane-2,7'- thieno[3,2-b]pyran]-6'-carbonitrile 1',1'-dioxide top
Crystal data top
C16H10N2O5SF(000) = 704
Mr = 342.32Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5046 reflections
a = 9.436 (3) Åθ = 1.4–27.9°
b = 10.602 (3) ŵ = 0.25 mm1
c = 14.777 (4) ÅT = 116 K
β = 99.137 (4)°Prism, colorless
V = 1459.6 (6) Å30.28 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2549 independent reflections
Radiation source: rotating anode1985 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.068
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω and ϕ scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 1212
Tmin = 0.933, Tmax = 0.956l = 1711
9619 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0872P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2549 reflectionsΔρmax = 0.58 e Å3
226 parametersΔρmin = 0.64 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.287 (14)
Crystal data top
C16H10N2O5SV = 1459.6 (6) Å3
Mr = 342.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.436 (3) ŵ = 0.25 mm1
b = 10.602 (3) ÅT = 116 K
c = 14.777 (4) Å0.28 × 0.20 × 0.18 mm
β = 99.137 (4)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2549 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
1985 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.956Rint = 0.068
9619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0583 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.58 e Å3
2549 reflectionsΔρmin = 0.64 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97876 (6)0.43469 (5)0.18224 (4)0.0160 (2)
O10.95541 (18)0.55710 (13)0.14090 (11)0.0236 (4)
O20.95173 (17)0.32826 (14)0.12109 (11)0.0253 (4)
O30.68230 (16)0.65052 (13)0.24233 (10)0.0205 (4)
O40.68085 (16)0.20574 (13)0.21541 (10)0.0216 (4)
O50.93203 (15)0.34731 (13)0.42896 (10)0.0183 (4)
N10.7756 (2)0.36526 (18)0.52595 (13)0.0224 (5)
N20.4414 (2)0.46284 (18)0.40031 (13)0.0242 (5)
C11.1509 (2)0.42085 (19)0.25136 (15)0.0170 (5)
H1A1.21450.37050.22040.020*
H1B1.19360.50340.26440.020*
C21.1251 (2)0.35644 (19)0.33972 (15)0.0172 (5)
H2A1.14710.26720.33790.021*
H2B1.18540.39370.39220.021*
C30.9718 (2)0.37524 (18)0.34620 (14)0.0151 (5)
C40.8818 (2)0.41635 (18)0.27348 (14)0.0148 (5)
C50.7227 (2)0.42359 (18)0.26815 (15)0.0149 (5)
C60.6933 (2)0.41396 (18)0.36651 (15)0.0150 (5)
C70.7939 (2)0.37715 (18)0.43869 (14)0.0160 (5)
C80.5539 (2)0.43993 (18)0.38449 (15)0.0160 (5)
C90.6480 (2)0.54337 (19)0.22236 (15)0.0158 (5)
C100.5243 (2)0.50111 (19)0.15446 (14)0.0151 (5)
C110.4185 (2)0.5739 (2)0.10321 (15)0.0201 (5)
H110.42070.66150.10740.024*
C120.3101 (2)0.5133 (2)0.04602 (15)0.0233 (6)
H120.23750.56040.01180.028*
C130.3079 (3)0.3814 (2)0.03878 (15)0.0226 (5)
H130.23400.34250.00050.027*
C140.4129 (2)0.3084 (2)0.08852 (14)0.0197 (5)
H140.41170.22100.08310.024*
C150.5215 (2)0.36997 (18)0.14740 (14)0.0152 (5)
C160.6443 (2)0.31490 (19)0.20917 (14)0.0156 (5)
H1C0.6992 (18)0.394 (2)0.5484 (15)0.036 (7)*
H1D0.841 (2)0.325 (2)0.5651 (14)0.047 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0134 (4)0.0201 (4)0.0148 (3)0.0004 (2)0.0034 (2)0.0006 (2)
O10.0225 (10)0.0262 (9)0.0231 (9)0.0053 (6)0.0064 (7)0.0088 (7)
O20.0227 (10)0.0316 (9)0.0226 (9)0.0070 (7)0.0062 (7)0.0101 (7)
O30.0213 (10)0.0148 (8)0.0257 (9)0.0017 (6)0.0046 (7)0.0003 (7)
O40.0219 (9)0.0154 (8)0.0268 (9)0.0029 (6)0.0016 (7)0.0006 (7)
O50.0147 (9)0.0241 (8)0.0167 (8)0.0048 (6)0.0043 (6)0.0037 (6)
N10.0222 (12)0.0287 (11)0.0171 (10)0.0084 (9)0.0056 (9)0.0052 (9)
N20.0179 (12)0.0353 (11)0.0196 (11)0.0024 (8)0.0039 (9)0.0013 (8)
C10.0133 (12)0.0185 (11)0.0191 (12)0.0018 (9)0.0029 (9)0.0009 (9)
C20.0152 (12)0.0183 (10)0.0181 (11)0.0014 (9)0.0025 (9)0.0007 (9)
C30.0175 (12)0.0131 (10)0.0157 (11)0.0008 (8)0.0051 (9)0.0015 (9)
C40.0135 (12)0.0162 (10)0.0156 (11)0.0006 (8)0.0053 (9)0.0018 (9)
C50.0124 (12)0.0157 (10)0.0167 (11)0.0001 (8)0.0027 (9)0.0002 (9)
C60.0141 (12)0.0150 (10)0.0167 (11)0.0009 (8)0.0047 (9)0.0005 (9)
C70.0168 (12)0.0127 (10)0.0196 (12)0.0011 (8)0.0065 (9)0.0003 (9)
C80.0185 (13)0.0163 (11)0.0125 (11)0.0024 (9)0.0005 (9)0.0002 (8)
C90.0140 (12)0.0193 (11)0.0158 (11)0.0014 (8)0.0074 (9)0.0002 (9)
C100.0139 (12)0.0187 (11)0.0136 (11)0.0013 (9)0.0050 (9)0.0010 (9)
C110.0217 (13)0.0201 (11)0.0192 (12)0.0054 (9)0.0052 (10)0.0012 (9)
C120.0215 (14)0.0305 (12)0.0168 (12)0.0077 (10)0.0007 (10)0.0042 (10)
C130.0189 (13)0.0309 (12)0.0169 (12)0.0023 (10)0.0008 (10)0.0034 (10)
C140.0214 (13)0.0205 (11)0.0175 (12)0.0008 (9)0.0040 (10)0.0001 (9)
C150.0138 (12)0.0187 (10)0.0135 (11)0.0001 (8)0.0038 (9)0.0001 (9)
C160.0143 (12)0.0179 (11)0.0158 (11)0.0012 (9)0.0064 (9)0.0017 (9)
Geometric parameters (Å, º) top
S1—O11.4364 (15)C4—C51.493 (3)
S1—O21.4428 (16)C5—C61.526 (3)
S1—C41.756 (2)C5—C91.554 (3)
S1—C11.782 (2)C5—C161.559 (3)
O3—C91.205 (2)C6—C71.368 (3)
O4—C161.207 (2)C6—C81.409 (3)
O5—C31.367 (2)C9—C101.482 (3)
O5—C71.371 (3)C10—C111.388 (3)
N1—C71.334 (3)C10—C151.394 (3)
N1—H1C0.893 (9)C11—C121.378 (3)
N1—H1D0.889 (9)C11—H110.9300
N2—C81.149 (3)C12—C131.403 (3)
C1—C21.527 (3)C12—H120.9300
C1—H1A0.9700C13—C141.374 (3)
C1—H1B0.9700C13—H130.9300
C2—C31.478 (3)C14—C151.396 (3)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.477 (3)
C3—C41.333 (3)
O1—S1—O2116.12 (10)C9—C5—C16102.61 (17)
O1—S1—C4111.29 (10)C7—C6—C8117.51 (19)
O2—S1—C4109.41 (9)C7—C6—C5123.58 (19)
O1—S1—C1112.48 (10)C8—C6—C5118.87 (19)
O2—S1—C1110.42 (10)N1—C7—C6126.9 (2)
C4—S1—C195.13 (10)N1—C7—O5110.57 (19)
C3—O5—C7116.39 (16)C6—C7—O5122.56 (18)
C7—N1—H1C124.3 (15)N2—C8—C6178.7 (2)
C7—N1—H1D119.4 (16)O3—C9—C10127.1 (2)
H1C—N1—H1D116.3 (15)O3—C9—C5125.3 (2)
C2—C1—S1105.81 (14)C10—C9—C5107.55 (16)
C2—C1—H1A110.6C11—C10—C15120.68 (19)
S1—C1—H1A110.6C11—C10—C9128.46 (19)
C2—C1—H1B110.6C15—C10—C9110.84 (17)
S1—C1—H1B110.6C12—C11—C10118.3 (2)
H1A—C1—H1B108.7C12—C11—H11120.8
C3—C2—C1106.59 (17)C10—C11—H11120.8
C3—C2—H2A110.4C11—C12—C13120.8 (2)
C1—C2—H2A110.4C11—C12—H12119.6
C3—C2—H2B110.4C13—C12—H12119.6
C1—C2—H2B110.4C14—C13—C12121.3 (2)
H2A—C2—H2B108.6C14—C13—H13119.3
C4—C3—O5124.2 (2)C12—C13—H13119.3
C4—C3—C2119.78 (19)C13—C14—C15117.7 (2)
O5—C3—C2116.05 (18)C13—C14—H14121.1
C3—C4—C5124.48 (19)C15—C14—H14121.1
C3—C4—S1108.20 (16)C10—C15—C14121.09 (19)
C5—C4—S1126.58 (16)C10—C15—C16110.13 (17)
C4—C5—C6106.25 (17)C14—C15—C16128.78 (19)
C4—C5—C9116.60 (17)O4—C16—C15127.8 (2)
C6—C5—C9109.32 (16)O4—C16—C5124.15 (19)
C4—C5—C16112.07 (16)C15—C16—C5108.03 (16)
C6—C5—C16109.94 (16)
O1—S1—C1—C2135.04 (14)C3—O5—C7—C610.1 (3)
O2—S1—C1—C293.46 (15)C7—C6—C8—N259 (11)
C4—S1—C1—C219.47 (15)C5—C6—C8—N2123 (11)
S1—C1—C2—C320.47 (19)C4—C5—C9—O351.7 (3)
C7—O5—C3—C47.2 (3)C6—C5—C9—O368.8 (3)
C7—O5—C3—C2173.23 (16)C16—C5—C9—O3174.58 (19)
C1—C2—C3—C413.2 (3)C4—C5—C9—C10131.25 (19)
C1—C2—C3—O5167.28 (16)C6—C5—C9—C10108.26 (18)
O5—C3—C4—C57.5 (3)C16—C5—C9—C108.4 (2)
C2—C3—C4—C5172.05 (18)O3—C9—C10—C113.5 (4)
O5—C3—C4—S1178.14 (15)C5—C9—C10—C11173.4 (2)
C2—C3—C4—S11.4 (2)O3—C9—C10—C15177.91 (19)
O1—S1—C4—C3129.26 (15)C5—C9—C10—C155.1 (2)
O2—S1—C4—C3101.07 (16)C15—C10—C11—C120.6 (3)
C1—S1—C4—C312.70 (16)C9—C10—C11—C12177.8 (2)
O1—S1—C4—C560.3 (2)C10—C11—C12—C130.9 (3)
O2—S1—C4—C569.34 (19)C11—C12—C13—C140.3 (3)
C1—S1—C4—C5176.89 (18)C12—C13—C14—C150.6 (3)
C3—C4—C5—C616.4 (3)C11—C10—C15—C140.3 (3)
S1—C4—C5—C6174.71 (14)C9—C10—C15—C14178.97 (19)
C3—C4—C5—C9138.5 (2)C11—C10—C15—C16179.47 (19)
S1—C4—C5—C952.6 (2)C9—C10—C15—C160.8 (2)
C3—C4—C5—C16103.7 (2)C13—C14—C15—C100.9 (3)
S1—C4—C5—C1665.2 (2)C13—C14—C15—C16178.8 (2)
C4—C5—C6—C713.2 (3)C10—C15—C16—O4173.9 (2)
C9—C5—C6—C7139.8 (2)C14—C15—C16—O46.3 (4)
C16—C5—C6—C7108.3 (2)C10—C15—C16—C56.4 (2)
C4—C5—C6—C8169.09 (17)C14—C15—C16—C5173.4 (2)
C9—C5—C6—C842.5 (2)C4—C5—C16—O445.5 (3)
C16—C5—C6—C869.4 (2)C6—C5—C16—O472.4 (2)
C8—C6—C7—N11.5 (3)C9—C5—C16—O4171.39 (18)
C5—C6—C7—N1179.2 (2)C4—C5—C16—C15134.76 (18)
C8—C6—C7—O5178.80 (17)C6—C5—C16—C15107.32 (18)
C5—C6—C7—O51.0 (3)C9—C5—C16—C158.9 (2)
C3—O5—C7—N1169.63 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···N2i0.89 (1)2.23 (1)3.067 (3)157 (2)
N1—H1D···O2ii0.89 (1)2.03 (1)2.865 (2)156 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H10N2O5S
Mr342.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)116
a, b, c (Å)9.436 (3), 10.602 (3), 14.777 (4)
β (°) 99.137 (4)
V3)1459.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.933, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
9619, 2549, 1985
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.127, 1.00
No. of reflections2549
No. of parameters226
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.64

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···N2i0.893 (9)2.227 (13)3.067 (3)157 (2)
N1—H1D···O2ii0.889 (9)2.031 (14)2.865 (2)156 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of Gansu Province (No. 0916RJZA0500).

References

First citationChao, J. H., Zheng, J. Y. & Aslanian, R. G. (2009). WO Patent No. 2009020578.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFriary, R. J., Schwerdt, J. H. & Ganguly, A. K. (1991). US Patent No. 5 034 531.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds