metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m406-m407

Bis[diamminesilver(I)] 5-nitro­iso­phthalate monohydrate

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: rbhuang@xmu.edu.cn

(Received 4 February 2010; accepted 1 March 2010; online 13 March 2010)

In the title compound, [Ag(NH3)2]2(C8H3NO6)·H2O, the cations have an almost linear coordination geometry with two ammine ligands and inter­act with the water mol­ecules [Ag⋯Owater = 2.725 (4) and 2.985 (4) Å]. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds, combined with weak (lone pair)⋯π [O⋯centroid distance = 3.401 (4) Å] and ππ stacking [centroid–centroid distance = 3.975 (3) Å] inter­actions, stabilize the three-dimensional supra­molecular network.

Related literature

For general background to crystal engineering and supra­molecular chemistry, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Blake et al. (1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]); Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]). For general background to non-covalent inter­actions, see: Biswas et al. (2009[Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238-2246.]); Egli & Arkhel (2007[Egli, M. & Arkhel, S. (2007). Acc. Chem. Res. 40, 197-205.]); Jeffrey et al. (1985[Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-348.]); Mooibroek et al. (2006[Mooibroek, T. J., Teat, S. J., Massera, C., Gamez, P. & Reedijk, J. (2006). Cryst. Growth Des. 6, 1569-1574.]); Nishio et al. (1998[Nishio, M., Hirota, M. & Umezawa, Y. (1998). The C—H⋯π Interactions (Evidence, Nature and Consequences). New York: Wiley-VCH.]); Rahman et al. (2003[Rahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422-428.]). For related structures, see: Sun, Luo, Huang et al. (2009[Sun, D., Luo, G.-G., Huang, R.-B., Zhang, N. & Zheng, L.-S. (2009). Acta Cryst. C65, m305-m307.]); Sun, Luo, Xu et al. (2009[Sun, D., Luo, G.-G., Xu, Q.-J., Zhang, N., Jin, Y.-C., Zhao, H.-X., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2009). Inorg. Chem. Commun. 12, 782-784.]); Sun, Luo, Zhang et al. (2009[Sun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983-2988.]); You & Zhu (2004[You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m517-m519.]); You et al. (2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1624-m1626.]); Zheng et al. (2002[Zheng, S.-L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360-364.], 2007[Zheng, S.-L., Volkov, A. C., Nygren, L. & Coppens, P. (2007). Chem. Eur. J. 13, 8583-8590.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NH3)2]2(C8H3NO6)·H2O

  • Mr = 511.01

  • Monoclinic, P 21 /c

  • a = 7.692 (2) Å

  • b = 12.229 (3) Å

  • c = 16.379 (4) Å

  • β = 102.100 (4)°

  • V = 1506.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 298 K

  • 0.11 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.760, Tmax = 0.817

  • 7118 measured reflections

  • 2627 independent reflections

  • 2500 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.114

  • S = 1.22

  • 2627 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.112 (5)
Ag1—N2 2.105 (5)
Ag2—N3 2.088 (4)
Ag2—N4 2.094 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.85 1.96 2.807 (5) 177
O1W—H1WB⋯O3 0.85 1.88 2.684 (5) 156
N1—H1B⋯O4ii 0.89 2.35 3.082 (6) 140
N1—H1C⋯O1 0.89 2.10 2.905 (6) 149
N2—H2A⋯O3iii 0.89 2.09 2.954 (6) 164
N2—H2B⋯O4iv 0.89 2.36 3.218 (6) 163
N2—H2C⋯O1Wii 0.89 2.28 3.059 (6) 147
N2—H2C⋯O6 0.89 2.57 2.990 (6) 110
N3—H3A⋯O2v 0.89 2.08 2.937 (6) 163
N3—H3B⋯O1iv 0.89 2.06 2.930 (6) 167
N3—H3C⋯O4 0.89 2.02 2.901 (5) 173
N4—H4A⋯O4vi 0.89 2.23 3.088 (6) 163
N4—H4B⋯O3vii 0.89 2.14 3.024 (6) 176
N4—H4C⋯O2ii 0.89 2.15 3.036 (5) 175
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Renaissance in crystal engineering and supramolecular chemistry is due to the diverse and aesthetic structural topologies and potential use in optical, electrical, catalytic, gas storage and even drug delivery as functional solid materials (Batten & Robson, 1998; Blake et al., 1999; Yaghi et al., 2003). In addition to coordination bonds, noncovalent interactions such as hydrogen bond, ππ stacking, C—H···π, anion···π, cation···π and lone-pair(lp)···π interactions between molecules also play a pivotal role in the stability of molecule packing and govern the physicochemical properties of molecular systems in the condensed phase (Mooibroek et al., 2006; Nishio et al., 1998). Although AgI ion under ammoniacal conditions can form {[Ag(NH3)2]+}n (n = 1 or 2) (Zheng et al., 2007), which can be stabilized by supramolecular interactions, only limited [Ag(NH3)2]-containing compounds were documented due to the weak Ag—Nammine coordination bond (You et al., 2004; Zheng et al., 2002). Recently, we have pursued systematic investigations about the self-assembly of AgI ion with different bipodal N-donor ligands and multicarboxylates under ammoniacal conditions (Sun, Luo, Huang et al., 2009; Sun, Luo, Xu et al., 2009; Sun, Luo, Zhang et al., 2009). In an attempt to exploit the AgI/aminopyrazine/H2nipa system (H2nipa = 5-nitroisophthalic acid), we surprisingly obtained the title compound.

The title compound comprises two [Ag(NH3)2]+ cations, one nipa anion and one uncoordinated water molecule in the asymmetric unit (Fig. 1). Each AgI ion is in an almost linear coordination environment, coordinated by two ammonia molecules, forming a cationic [Ag(NH3)2]+ monomer. The Ag—N bond lengths range from 2.088 (4) to 2.112 (5) Å (Table 1), which are comparable to the corresponding values observed in other silver(I) compounds (You & Zhu, 2004). The N1—Ag1—N2 [169.90 (19)°] and N3—Ag2—N4 [174.05 (16)°] angles deviate from the ideal 180°, as a result of weak interactions between the AgI ions and water molecules. The Ag1···O1Wiii and Ag2···O1Wv distances are 2.725 (4) and 2.985 (4) Å, respectively, which suggest anything other than a secondary interaction [symmetry codes: (iii) x, y+1, z; (v) x+1, -y+1/2, z+1/2]. The shortest centroid–centroid distance between neighboring phenyl rings of nipa anions is 3.975 (3) Å, with a large slippage of 2.129 Å, which suggests the existence of a weak offset ππ stacking interaction. On the other hand, one striking feature of the title compound is an lp···π interaction (Biswas et al., 2009; Egli & Arkhel, 2007). A weak lp···π interaction is observed between the nitro O5 atom and phenyl ring of the nipa anion. The distance between the ring centroid and O5 atom is 3.401 (4) Å. This lp(O)···π interaction distance falls in the range of few experimental examples so far reported (Rahman et al., 2003). The angle θ (which corresponds to the angle between the O atom, the ring centroid and the aromatic plane) is 83.7 (3)°, reflecting a significant lp···π interaction. Every two nipa anions arrange in a parallel manner, forming a dimer through lp(O)···π interactions, and the neighboring dimers pack togther through weak ππ stacking interactions into columns running along the a axis (Fig. 2).

One of the ammonia molecules forms a bifurcated hydrogen bond (Jeffrey et al., 1985) [N2–H2C···O1Wii and N2–H2C···O6, symmetry code: (ii) -x, -y+1, -z+1]. In addition, the [Ag(NH3)2]+ cations, nipa anions and water molecules interact via N—H···O and O—H···O hydrogen bonds (Table 2) [average N···O = 3.010 (6), O···O = 2.746 (5) Å] to consolidate the three-dimensional supramolecular network (Fig. 3).

Related literature top

For general background to crystal engineering and supramolecular chemistry, see: Batten & Robson (1998); Blake et al. (1999); Yaghi et al. (2003). For general background to non-covalent interactions, see: Biswas et al. (2009); Egli & Arkhel (2007); Jeffrey et al. (1985); Mooibroek et al. (2006); Nishio et al. (1998); Rahman et al. (2003). For related structures, see: Sun, Luo, Huang et al. (2009); Sun, Luo, Xu et al. (2009); Sun, Luo, Zhang et al. (2009); You & Zhu (2004); You et al. (2004); Zheng et al. (2002, 2007).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. A mixture of Ag2O (116 mg, 0.5 mmol), 2-aminopyrazine (95 mg, 1 mmol) and H2nipa (211 mg, 1 mmol) were stirred in CH3CN/H2O mixed solvent (8 ml, v/v = 1:1). Then aqueous NH3 solution (25%) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant solution was allowed to evaporate slowly in darkness at room temperature for several days to give colorless crystals of the title compound (yield 61%). They were washed with a small volume of cold CH3CN and diethyl ether. Analysis calculated for C8H17Ag2N5O7: C 18.80, H 3.35, N 13.71%; found: C 18.86, H 3.39, N 13.64%.

Refinement top

C- and N-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the coordination environment around the AgI center. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A ball-stick perspective view of the lp(O)···π (green dashed lines) and ππ (blue dashed lines) interactions in the title compound. H atoms and [Ag(NH3)2]+ cations have been omitted for clarity.
[Figure 3] Fig. 3. Perspective views of the three-dimensional supramolecular network incorporating N—H···O and O—H···O hydrogen bonds (dashed lines) viewed along two different directions.
Bis[diamminesilver(I)] 5-nitroisophthalate monohydrate top
Crystal data top
[Ag(NH3)2]2(C8H3NO6)·H2OF(000) = 1000
Mr = 511.01Dx = 2.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4729 reflections
a = 7.692 (2) Åθ = 5.1–57.2°
b = 12.229 (3) ŵ = 2.64 mm1
c = 16.379 (4) ÅT = 298 K
β = 102.100 (4)°Block, colorless
V = 1506.5 (7) Å30.11 × 0.10 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2627 independent reflections
Radiation source: sealed tube2500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1903 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 814
Tmin = 0.760, Tmax = 0.817l = 1719
7118 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.1461P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2627 reflectionsΔρmax = 0.97 e Å3
204 parametersΔρmin = 0.98 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0264 (13)
Crystal data top
[Ag(NH3)2]2(C8H3NO6)·H2OV = 1506.5 (7) Å3
Mr = 511.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.692 (2) ŵ = 2.64 mm1
b = 12.229 (3) ÅT = 298 K
c = 16.379 (4) Å0.11 × 0.10 × 0.08 mm
β = 102.100 (4)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2627 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2500 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.817Rint = 0.036
7118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.22Δρmax = 0.97 e Å3
2627 reflectionsΔρmin = 0.98 e Å3
204 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.01233 (6)0.87015 (4)0.39354 (3)0.0561 (2)
Ag20.56988 (5)0.37352 (3)0.78293 (3)0.0444 (2)
C10.1106 (5)0.4687 (4)0.4096 (3)0.0272 (9)
C20.1513 (6)0.3606 (4)0.4283 (3)0.0277 (9)
H20.09550.30650.39220.033*
C30.2729 (5)0.3307 (4)0.4993 (3)0.0273 (9)
C40.3475 (6)0.4110 (4)0.5543 (3)0.0294 (10)
H40.42780.39290.60320.035*
C50.3022 (6)0.5176 (4)0.5362 (3)0.0281 (9)
C60.1878 (6)0.5481 (4)0.4639 (3)0.0294 (10)
H60.16310.62160.45210.035*
C70.0153 (6)0.4982 (4)0.3292 (3)0.0308 (10)
C80.3273 (6)0.2131 (4)0.5152 (3)0.0293 (10)
N10.1928 (7)0.8046 (4)0.3002 (3)0.0544 (12)
H1A0.18670.83330.25090.065*
H1B0.29770.82050.31200.065*
H1C0.18050.73230.29830.065*
N20.2262 (6)0.9066 (4)0.4929 (3)0.0499 (11)
H2A0.24410.97860.49540.060*
H2B0.32390.87330.48460.060*
H2C0.20110.88350.54060.060*
N30.7101 (6)0.2725 (4)0.7167 (3)0.0411 (10)
H3A0.75760.21710.74900.049*
H3B0.79620.31080.70120.049*
H3C0.63640.24660.67160.049*
N40.4096 (5)0.4767 (4)0.8378 (2)0.0395 (10)
H4A0.47370.53330.86150.047*
H4B0.36770.43990.87640.047*
H4C0.31920.50080.79880.047*
N50.3862 (6)0.6021 (4)0.5942 (2)0.0358 (9)
O10.0137 (5)0.5948 (3)0.3058 (2)0.0405 (8)
O1W0.0469 (5)0.0861 (3)0.3572 (2)0.0502 (9)
H1WA0.03150.08710.30730.060*
H1WB0.04740.11890.38130.060*
O20.1083 (5)0.4259 (3)0.2916 (2)0.0502 (10)
O30.2508 (5)0.1444 (3)0.4657 (3)0.0494 (10)
O40.4452 (5)0.1927 (3)0.5764 (2)0.0412 (8)
O50.4957 (5)0.5735 (3)0.6553 (2)0.0509 (10)
O60.3436 (6)0.6952 (3)0.5786 (2)0.0567 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0498 (3)0.0475 (3)0.0734 (4)0.00206 (19)0.0184 (2)0.0061 (2)
Ag20.0446 (3)0.0460 (3)0.0402 (3)0.00187 (17)0.00340 (18)0.00385 (17)
C10.027 (2)0.030 (2)0.025 (2)0.0008 (18)0.0062 (16)0.0021 (18)
C20.032 (2)0.026 (2)0.024 (2)0.0037 (18)0.0049 (17)0.0045 (17)
C30.024 (2)0.028 (2)0.030 (2)0.0005 (18)0.0057 (17)0.0014 (19)
C40.030 (2)0.031 (2)0.027 (2)0.0013 (19)0.0049 (17)0.0026 (19)
C50.030 (2)0.028 (2)0.027 (2)0.0044 (19)0.0088 (17)0.0030 (18)
C60.028 (2)0.029 (2)0.032 (2)0.0017 (19)0.0104 (18)0.0025 (19)
C70.030 (2)0.028 (3)0.034 (2)0.005 (2)0.0069 (18)0.006 (2)
C80.031 (2)0.027 (2)0.031 (2)0.0054 (19)0.0082 (19)0.0019 (19)
N10.061 (3)0.048 (3)0.055 (3)0.006 (2)0.016 (2)0.001 (2)
N20.052 (3)0.038 (3)0.062 (3)0.006 (2)0.015 (2)0.009 (2)
N30.038 (2)0.038 (2)0.043 (2)0.0028 (19)0.0014 (18)0.0036 (19)
N40.039 (2)0.039 (2)0.039 (2)0.0006 (19)0.0032 (17)0.0000 (19)
N50.042 (2)0.035 (2)0.031 (2)0.0080 (19)0.0082 (18)0.0020 (18)
O10.044 (2)0.0333 (19)0.0391 (19)0.0038 (16)0.0021 (15)0.0113 (16)
O1W0.045 (2)0.059 (3)0.043 (2)0.0005 (19)0.0004 (16)0.0007 (19)
O20.054 (2)0.037 (2)0.047 (2)0.0080 (18)0.0167 (17)0.0017 (18)
O30.060 (2)0.0287 (19)0.049 (2)0.0045 (17)0.0119 (18)0.0091 (17)
O40.0412 (18)0.0344 (19)0.0393 (18)0.0044 (15)0.0112 (15)0.0000 (15)
O50.060 (2)0.046 (2)0.039 (2)0.0077 (19)0.0089 (17)0.0042 (17)
O60.088 (3)0.027 (2)0.049 (2)0.002 (2)0.001 (2)0.0022 (17)
Geometric parameters (Å, º) top
Ag1—N12.112 (5)C7—O11.243 (6)
Ag1—N22.105 (5)C8—O31.228 (6)
Ag2—N32.088 (4)C8—O41.229 (5)
Ag2—N42.094 (4)N1—H1A0.8900
Ag1—O1Wi2.725 (4)N1—H1B0.8900
Ag2—O1Wii2.985 (4)N1—H1C0.8900
C1—C61.367 (6)N2—H2A0.8900
C1—C21.378 (6)N2—H2B0.8900
C1—C71.505 (6)N2—H2C0.8900
C2—C31.380 (6)N3—H3A0.8900
C2—H20.9300N3—H3B0.8900
C3—C41.374 (6)N3—H3C0.8900
C3—C81.505 (6)N4—H4A0.8900
C4—C51.366 (6)N4—H4B0.8900
C4—H40.9300N4—H4C0.8900
C5—C61.370 (6)N5—O61.198 (6)
C5—N51.460 (6)N5—O51.217 (5)
C6—H60.9300O1W—H1WA0.8501
C7—O21.220 (6)O1W—H1WB0.8500
N2—Ag1—N1169.90 (19)O4—C8—C3117.8 (4)
N3—Ag2—N4174.05 (16)Ag1—N1—H1A109.5
N2—Ag1—O1Wi91.79 (15)Ag1—N1—H1B109.5
N1—Ag1—O1Wi98.31 (16)H1A—N1—H1B109.5
N3—Ag2—O1Wii74.69 (14)Ag1—N1—H1C109.5
N4—Ag2—O1Wii110.21 (14)H1A—N1—H1C109.5
C6—C1—C2119.3 (4)H1B—N1—H1C109.5
C6—C1—C7120.7 (4)Ag1—N2—H2A109.5
C2—C1—C7119.9 (4)Ag1—N2—H2B109.5
C1—C2—C3121.6 (4)H2A—N2—H2B109.5
C1—C2—H2119.2Ag1—N2—H2C109.5
C3—C2—H2119.2H2A—N2—H2C109.5
C4—C3—C2118.7 (4)H2B—N2—H2C109.5
C4—C3—C8120.4 (4)Ag2—N3—H3A109.5
C2—C3—C8120.9 (4)Ag2—N3—H3B109.5
C5—C4—C3119.1 (4)H3A—N3—H3B109.5
C5—C4—H4120.4Ag2—N3—H3C109.5
C3—C4—H4120.4H3A—N3—H3C109.5
C4—C5—C6122.4 (4)H3B—N3—H3C109.5
C4—C5—N5118.5 (4)Ag2—N4—H4A109.5
C6—C5—N5119.0 (4)Ag2—N4—H4B109.5
C1—C6—C5118.8 (4)H4A—N4—H4B109.5
C1—C6—H6120.6Ag2—N4—H4C109.5
C5—C6—H6120.6H4A—N4—H4C109.5
O2—C7—O1125.1 (4)H4B—N4—H4C109.5
O2—C7—C1118.0 (4)O6—N5—O5124.1 (4)
O1—C7—C1116.8 (4)O6—N5—C5118.1 (4)
O3—C8—O4124.7 (4)O5—N5—C5117.8 (4)
O3—C8—C3117.5 (4)H1WA—O1W—H1WB99.3
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1iii0.851.962.807 (5)177
O1W—H1WB···O30.851.882.684 (5)156
N1—H1B···O4iv0.892.353.082 (6)140
N1—H1C···O10.892.102.905 (6)149
N2—H2A···O3i0.892.092.954 (6)164
N2—H2B···O4v0.892.363.218 (6)163
N2—H2C···O1Wiv0.892.283.059 (6)147
N2—H2C···O60.892.572.990 (6)110
N3—H3A···O2ii0.892.082.937 (6)163
N3—H3B···O1v0.892.062.930 (6)167
N3—H3C···O40.892.022.901 (5)173
N4—H4A···O4vi0.892.233.088 (6)163
N4—H4B···O3vii0.892.143.024 (6)176
N4—H4C···O2iv0.892.153.036 (5)175
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1/2, z+3/2; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(NH3)2]2(C8H3NO6)·H2O
Mr511.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.692 (2), 12.229 (3), 16.379 (4)
β (°) 102.100 (4)
V3)1506.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.11 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.760, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
7118, 2627, 2500
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.22
No. of reflections2627
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.98

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag1—N12.112 (5)Ag2—N32.088 (4)
Ag1—N22.105 (5)Ag2—N42.094 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.851.962.807 (5)177
O1W—H1WB···O30.851.882.684 (5)156
N1—H1B···O4ii0.892.353.082 (6)140
N1—H1C···O10.892.102.905 (6)149
N2—H2A···O3iii0.892.092.954 (6)164
N2—H2B···O4iv0.892.363.218 (6)163
N2—H2C···O1Wii0.892.283.059 (6)147
N2—H2C···O60.892.572.990 (6)110
N3—H3A···O2v0.892.082.937 (6)163
N3—H3B···O1iv0.892.062.930 (6)167
N3—H3C···O40.892.022.901 (5)173
N4—H4A···O4vi0.892.233.088 (6)163
N4—H4B···O3vii0.892.143.024 (6)176
N4—H4C···O2ii0.892.153.036 (5)175
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1/2, z+3/2; (vii) x, y+1/2, z+1/2.
 

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBiswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238–2246.  Web of Science CSD CrossRef Google Scholar
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEgli, M. & Arkhel, S. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336–348.  CrossRef CAS Web of Science Google Scholar
First citationMooibroek, T. J., Teat, S. J., Massera, C., Gamez, P. & Reedijk, J. (2006). Cryst. Growth Des. 6, 1569–1574.  Web of Science CSD CrossRef CAS Google Scholar
First citationNishio, M., Hirota, M. & Umezawa, Y. (1998). The C—H⋯π Interactions (Evidence, Nature and Consequences). New York: Wiley-VCH.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Luo, G.-G., Huang, R.-B., Zhang, N. & Zheng, L.-S. (2009). Acta Cryst. C65, m305–m307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, D., Luo, G.-G., Xu, Q.-J., Zhang, N., Jin, Y.-C., Zhao, H.-X., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2009). Inorg. Chem. Commun. 12, 782–784.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983–2988.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m517–m519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1624–m1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, S.-L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.  Web of Science CSD CrossRef Google Scholar
First citationZheng, S.-L., Volkov, A. C., Nygren, L. & Coppens, P. (2007). Chem. Eur. J. 13, 8583–8590.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m406-m407
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds