organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-{5-[(di­ethyl­amino)meth­yl]isoxazol-3-yl}-2-phenyl­pyrazolo[1,5-a]pyridine-5-carboxyl­ate

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: jwwang@sdu.edu.cn

(Received 8 January 2010; accepted 2 February 2010; online 3 March 2010)

In the title compound, C24H26N4O3, the pyrazolo[1,5-a]pyridine ring system makes dihedral angles of 38.130 (3) and 30.120 (3)°, respectively, with the isoxazole and phenyl rings. In the crystal, two mol­ecules are linked by a pair of C—H⋯N hydrogen bonds, forming a centrosymmetric dimer. A weak intra­molecular C—H⋯O inter­action is also present.

Related literature

For the bioactivity of pyrazolo[1,5-a]pyridine and isoxazole derivatives, see: Cuny et al. (2008[Cuny, G. D., Yu, P. B., Laha, J. K., Xing, X. C., Liu, J. F., Lai, C. S., Deng, D. Y., Sachidanandan, C., Bloch, K. D. & Peterson, R. T. (2008). Bioorg. Med. Chem. Lett. 18, 4388-4392.]); Ge et al. (2009[Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 78, 197-206.]); Johns et al. (2005[Johns, B. A., Gudmundsson, K. S., Turner, E. M., Allen, S. H., Samano, V. A., Ray, J. A., Freeman, G. A. F., Boyd, L. Jr, Sexton, C. J., Selleseth, D. W., Creechb, K. L. & Monirib, K. R. (2005). Bioorg. Med. Chem. 13, 2397-2411.]); Lanig et al. (2001[Lanig, H., Utz, W. & Gmeiner, P. (2001). J. Med. Chem. 44, 1151-1157.]); Lee et al. (2009[Lee, Y. S., Park, S. M., Kim, H. M., Park, S. K., Lee, K., Lee, C. W. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 4688-4691.]). For the synthesis of ethyl 3-(5-((methyl­sulfon­yloxy)meth­yl)isoxazol-3-yl)-2-phenyl-H-pyrazolo[1,5-a]pyridine-5-carboxyl­ate, see: Meng et al. (2010[Meng, Q. Y., Yin, L., Liu, W., Jia, J., Zhan, F. X., Ge, Y. Q., Yang, H. & Wang, J. W. (2010). In preparation.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N4O3

  • Mr = 418.49

  • Triclinic, [P \overline 1]

  • a = 6.1250 (7) Å

  • b = 13.1425 (16) Å

  • c = 13.7139 (16) Å

  • α = 93.600 (2)°

  • β = 95.514 (2)°

  • γ = 95.637 (2)°

  • V = 1090.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.992, Tmax = 0.992

  • 5453 measured reflections

  • 3800 independent reflections

  • 2842 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.187

  • S = 1.07

  • 3800 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N2i 0.93 2.54 3.456 (3) 169
C22—H22A⋯O3 0.97 2.52 3.218 (3) 129
Symmetry code: (i) -x-1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolo[1,5-a]pyridine derivatives have been intensively investigated due to their widespread biological activities (Cuny et al., 2008; Johns et al., 2005; Lanig et al., 2001). Thus, it is necessary to further widen the system of application of heterocycle compounds. Recently, an interesting intramolecular condensation of α,β-unsaturated esters with aldehydes has been discovered, leading to a series of pyrazolo[1,5-a]pyridines under mild conditions (Ge et al., 2009). Moreover, it is well known that many compounds with isoxazole core show potent antitumor activities (Lee et al., 2009). It is therefore worth trying to incorporate isoxazole core into pyrazolo[1,5-a]pyridine scaffold to improve the biological activity (Meng et al., 2010). Herein, a novel heterocycle compound has been obtained and its molecular structure is depicted (Fig. 1).

Related literature top

For the bioactivity of pyrazolo[1,5-a]pyridine and isoxazole derivatives, see: Cuny et al. (2008); Ge et al. (2009); Johns et al. (2005); Lanig et al. (2001); Lee et al. (2009). For the synthsis of ethyl 3-(5-((methylsulfonyloxy)methyl)isoxazol-3-yl)-2-phenyl H-pyrazolo[1,5-a]pyridine-5-carboxylate, see: Meng et al. (2010).

Experimental top

To a solution of ethyl 3-{5-[(methylsulfonyloxy)methyl]isoxazol-3-yl}-2-phenyl H-pyrazolo[1,5-a]pyridine-5-carboxylate (Meng et al., 2010) (0.33 g, 0.75 mmol) in THF (20 ml) was added diethylamine (0.22 ml, 2.25 mmol). The mixture was stirred for 12 h. Water and dichloromethane were added in turn and stirred, and layers were separated. The aqueous layer was back-extracted with dichloromethane. The combined organics were washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (yield 89%). The crystals of (I) were obtained from a hexane-ethyl acetate-dichloromethane (3:1:1, v/v/v) solution by slow evaporation at room temperature (m.p. 363–364 K).

Refinement top

H atoms were refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In addition, a rigid-body restraint 'DELU' was applied for atoms C21 and C22.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Ethyl 3-{5-[(diethylamino)methyl]isoxazol-3-yl}-2- phenylpyrazolo[1,5-a]pyridine-5-carboxylate top
Crystal data top
C24H26N4O3Z = 2
Mr = 418.49F(000) = 444
Triclinic, P1Dx = 1.274 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1250 (7) ÅCell parameters from 1181 reflections
b = 13.1425 (16) Åθ = 2.5–25.5°
c = 13.7139 (16) ŵ = 0.09 mm1
α = 93.600 (2)°T = 298 K
β = 95.514 (2)°Block, colorless
γ = 95.637 (2)°0.10 × 0.10 × 0.10 mm
V = 1090.6 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3800 independent reflections
Radiation source: fine-focus sealed tube2842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.5°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1513
Tmin = 0.992, Tmax = 0.992l = 1416
5453 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0993P)2 + 0.4336P]
where P = (Fo2 + 2Fc2)/3
3800 reflections(Δ/σ)max = 0.004
281 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C24H26N4O3γ = 95.637 (2)°
Mr = 418.49V = 1090.6 (2) Å3
Triclinic, P1Z = 2
a = 6.1250 (7) ÅMo Kα radiation
b = 13.1425 (16) ŵ = 0.09 mm1
c = 13.7139 (16) ÅT = 298 K
α = 93.600 (2)°0.10 × 0.10 × 0.10 mm
β = 95.514 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3800 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2842 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.992Rint = 0.014
5453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.187H-atom parameters constrained
S = 1.07Δρmax = 0.75 e Å3
3800 reflectionsΔρmin = 0.35 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2802 (5)0.0313 (2)0.0758 (3)0.0669 (9)
H1A0.40080.07240.07220.100*
H1B0.22000.02000.01060.100*
H1C0.16800.06630.10940.100*
C20.3600 (5)0.0686 (2)0.1300 (2)0.0585 (8)
H2A0.42190.05700.19570.070*
H2B0.47580.10310.09680.070*
C30.1430 (4)0.19374 (19)0.06317 (19)0.0441 (6)
C40.0421 (4)0.25659 (18)0.07983 (17)0.0393 (6)
C50.1456 (4)0.25212 (18)0.16402 (17)0.0366 (5)
H50.10600.20730.21090.044*
C60.3125 (4)0.31605 (17)0.17869 (16)0.0346 (5)
C70.2687 (4)0.3840 (2)0.02118 (18)0.0451 (6)
H70.31300.42700.02660.054*
C80.1074 (5)0.3235 (2)0.00756 (18)0.0470 (6)
H80.03800.32550.04980.056*
C90.4470 (4)0.33567 (17)0.25335 (16)0.0358 (5)
C100.5678 (4)0.41490 (18)0.22118 (17)0.0366 (5)
C110.7208 (4)0.47407 (18)0.27307 (18)0.0387 (6)
C120.6795 (5)0.5013 (2)0.3729 (2)0.0556 (7)
H120.55870.47900.40870.067*
C130.8164 (6)0.5616 (3)0.4199 (2)0.0686 (9)
H130.78670.57990.48680.082*
C140.9967 (6)0.5946 (2)0.3677 (3)0.0675 (9)
H141.08970.63450.39930.081*
C151.0381 (5)0.5682 (2)0.2687 (3)0.0610 (8)
H151.15970.59040.23350.073*
C160.9014 (4)0.50908 (19)0.2210 (2)0.0464 (6)
H160.93010.49250.15380.056*
C170.4706 (4)0.27444 (18)0.33801 (17)0.0369 (5)
C180.6611 (4)0.2496 (2)0.38597 (18)0.0437 (6)
H180.79810.27390.37430.052*
C190.6021 (5)0.1835 (2)0.45177 (19)0.0467 (6)
C200.7261 (5)0.1236 (2)0.5216 (2)0.0582 (8)
H20A0.87900.10910.49450.070*
H20B0.66550.05860.52830.070*
C210.4753 (6)0.2470 (3)0.7671 (2)0.0775 (10)
H21A0.32890.24510.79850.116*
H21B0.58100.22230.80970.116*
H21C0.49720.31620.75340.116*
C220.5053 (6)0.1792 (3)0.6711 (2)0.0719 (9)
H22A0.39530.20380.62930.086*
H22B0.47930.10990.68550.086*
C230.9023 (6)0.1347 (3)0.6722 (3)0.0747 (10)
H23A0.90820.17990.73040.090*
H23B1.03890.13670.63050.090*
C240.8942 (7)0.0293 (3)0.7027 (3)0.0898 (12)
H24A1.02120.01020.73610.135*
H24B0.76280.02630.74620.135*
H24C0.89350.01700.64580.135*
N10.3662 (3)0.38084 (15)0.10689 (14)0.0374 (5)
N20.5209 (3)0.44225 (16)0.13189 (15)0.0419 (5)
N30.3039 (4)0.22794 (19)0.37371 (17)0.0572 (7)
N40.7175 (4)0.1771 (2)0.61889 (18)0.0590 (7)
O10.1826 (3)0.13349 (14)0.13639 (14)0.0520 (5)
O20.2449 (4)0.19763 (17)0.00730 (16)0.0689 (6)
O30.3882 (4)0.16863 (16)0.44714 (14)0.0633 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (2)0.0539 (18)0.085 (2)0.0132 (15)0.0186 (17)0.0004 (16)
C20.0485 (16)0.0600 (18)0.0696 (19)0.0210 (14)0.0073 (14)0.0002 (15)
C30.0457 (14)0.0414 (13)0.0458 (15)0.0024 (11)0.0136 (12)0.0025 (11)
C40.0429 (14)0.0386 (13)0.0365 (13)0.0026 (11)0.0078 (11)0.0012 (10)
C50.0392 (13)0.0350 (12)0.0363 (12)0.0049 (10)0.0056 (10)0.0038 (10)
C60.0401 (13)0.0329 (12)0.0311 (12)0.0036 (10)0.0039 (10)0.0046 (9)
C70.0555 (16)0.0502 (15)0.0315 (13)0.0082 (12)0.0076 (11)0.0076 (11)
C80.0549 (16)0.0543 (15)0.0342 (13)0.0087 (13)0.0132 (12)0.0043 (11)
C90.0400 (13)0.0356 (12)0.0332 (12)0.0069 (10)0.0063 (10)0.0037 (10)
C100.0384 (13)0.0367 (12)0.0351 (12)0.0061 (10)0.0039 (10)0.0031 (10)
C110.0407 (13)0.0335 (12)0.0430 (14)0.0048 (10)0.0078 (11)0.0030 (10)
C120.0641 (18)0.0588 (17)0.0466 (16)0.0237 (14)0.0045 (13)0.0007 (13)
C130.086 (2)0.066 (2)0.0558 (18)0.0193 (18)0.0184 (17)0.0086 (15)
C140.065 (2)0.0577 (18)0.087 (2)0.0223 (16)0.0309 (18)0.0025 (17)
C150.0444 (16)0.0529 (17)0.087 (2)0.0141 (13)0.0048 (15)0.0008 (16)
C160.0408 (14)0.0412 (14)0.0570 (16)0.0055 (11)0.0037 (12)0.0020 (12)
C170.0440 (13)0.0370 (12)0.0314 (12)0.0096 (10)0.0066 (10)0.0034 (10)
C180.0437 (14)0.0512 (15)0.0383 (13)0.0078 (12)0.0073 (11)0.0102 (11)
C190.0552 (16)0.0468 (14)0.0409 (14)0.0075 (12)0.0145 (12)0.0065 (11)
C200.078 (2)0.0523 (16)0.0456 (16)0.0024 (15)0.0160 (14)0.0106 (13)
C210.092 (3)0.083 (2)0.0550 (19)0.003 (2)0.0054 (18)0.0036 (17)
C220.064 (2)0.091 (2)0.068 (2)0.0180 (18)0.0230 (17)0.0296 (18)
C230.065 (2)0.091 (3)0.075 (2)0.0170 (18)0.0260 (18)0.0182 (19)
C240.116 (3)0.078 (2)0.078 (2)0.013 (2)0.034 (2)0.022 (2)
N10.0417 (11)0.0386 (11)0.0334 (10)0.0087 (9)0.0044 (8)0.0060 (8)
N20.0459 (12)0.0455 (12)0.0373 (11)0.0144 (10)0.0060 (9)0.0080 (9)
N30.0639 (15)0.0715 (16)0.0474 (13)0.0290 (13)0.0242 (11)0.0290 (12)
N40.0586 (15)0.0684 (16)0.0547 (15)0.0082 (12)0.0184 (12)0.0185 (12)
O10.0531 (11)0.0529 (11)0.0554 (11)0.0202 (9)0.0161 (9)0.0066 (9)
O20.0720 (14)0.0770 (15)0.0680 (14)0.0234 (12)0.0390 (12)0.0133 (11)
O30.0735 (14)0.0733 (14)0.0565 (12)0.0356 (11)0.0274 (10)0.0345 (10)
Geometric parameters (Å, º) top
C1—C21.482 (4)C14—C151.373 (5)
C1—H1A0.9600C14—H140.9300
C1—H1B0.9600C15—C161.379 (4)
C1—H1C0.9600C15—H150.9300
C2—O11.451 (3)C16—H160.9300
C2—H2A0.9700C17—N31.311 (3)
C2—H2B0.9700C17—C181.415 (3)
C3—O21.201 (3)C18—C191.340 (4)
C3—O11.336 (3)C18—H180.9300
C3—C41.493 (4)C19—O31.350 (3)
C4—C51.371 (3)C19—C201.494 (4)
C4—C81.420 (4)C20—N41.462 (4)
C5—C61.407 (3)C20—H20A0.9700
C5—H50.9300C20—H20B0.9700
C6—N11.379 (3)C21—C221.528 (5)
C6—C91.402 (3)C21—H21A0.9600
C7—C81.347 (4)C21—H21B0.9600
C7—N11.370 (3)C21—H21C0.9600
C7—H70.9300C22—N41.419 (4)
C8—H80.9300C22—H22A0.9700
C9—C101.404 (3)C22—H22B0.9700
C9—C171.464 (3)C23—C241.476 (5)
C10—N21.347 (3)C23—N41.487 (4)
C10—C111.480 (3)C23—H23A0.9700
C11—C121.386 (4)C23—H23B0.9700
C11—C161.391 (3)C24—H24A0.9600
C12—C131.384 (4)C24—H24B0.9600
C12—H120.9300C24—H24C0.9600
C13—C141.379 (5)N1—N21.358 (3)
C13—H130.9300N3—O31.417 (3)
C2—C1—H1A109.5C15—C16—H16119.9
C2—C1—H1B109.5C11—C16—H16119.9
H1A—C1—H1B109.5N3—C17—C18111.6 (2)
C2—C1—H1C109.5N3—C17—C9119.6 (2)
H1A—C1—H1C109.5C18—C17—C9128.7 (2)
H1B—C1—H1C109.5C19—C18—C17105.3 (2)
O1—C2—C1111.2 (2)C19—C18—H18127.4
O1—C2—H2A109.4C17—C18—H18127.4
C1—C2—H2A109.4C18—C19—O3109.4 (2)
O1—C2—H2B109.4C18—C19—C20133.0 (3)
C1—C2—H2B109.4O3—C19—C20117.5 (2)
H2A—C2—H2B108.0N4—C20—C19113.1 (2)
O2—C3—O1124.2 (2)N4—C20—H20A109.0
O2—C3—C4123.9 (3)C19—C20—H20A109.0
O1—C3—C4111.9 (2)N4—C20—H20B109.0
C5—C4—C8120.0 (2)C19—C20—H20B109.0
C5—C4—C3121.2 (2)H20A—C20—H20B107.8
C8—C4—C3118.8 (2)C22—C21—H21A109.5
C4—C5—C6119.3 (2)C22—C21—H21B109.5
C4—C5—H5120.4H21A—C21—H21B109.5
C6—C5—H5120.4C22—C21—H21C109.5
N1—C6—C9105.8 (2)H21A—C21—H21C109.5
N1—C6—C5118.2 (2)H21B—C21—H21C109.5
C9—C6—C5136.0 (2)N4—C22—C21113.7 (3)
C8—C7—N1118.6 (2)N4—C22—H22A108.8
C8—C7—H7120.7C21—C22—H22A108.8
N1—C7—H7120.7N4—C22—H22B108.8
C7—C8—C4120.7 (2)C21—C22—H22B108.8
C7—C8—H8119.6H22A—C22—H22B107.7
C4—C8—H8119.6C24—C23—N4116.8 (3)
C6—C9—C10104.9 (2)C24—C23—H23A108.1
C6—C9—C17125.0 (2)N4—C23—H23A108.1
C10—C9—C17129.6 (2)C24—C23—H23B108.1
N2—C10—C9112.2 (2)N4—C23—H23B108.1
N2—C10—C11118.0 (2)H23A—C23—H23B107.3
C9—C10—C11129.7 (2)C23—C24—H24A109.5
C12—C11—C16118.7 (2)C23—C24—H24B109.5
C12—C11—C10120.9 (2)H24A—C24—H24B109.5
C16—C11—C10120.3 (2)C23—C24—H24C109.5
C13—C12—C11120.6 (3)H24A—C24—H24C109.5
C13—C12—H12119.7H24B—C24—H24C109.5
C11—C12—H12119.7N2—N1—C7124.3 (2)
C14—C13—C12120.1 (3)N2—N1—C6112.60 (19)
C14—C13—H13119.9C7—N1—C6123.1 (2)
C12—C13—H13119.9C10—N2—N1104.49 (18)
C15—C14—C13119.6 (3)C17—N3—O3104.9 (2)
C15—C14—H14120.2C22—N4—C20111.2 (3)
C13—C14—H14120.2C22—N4—C23114.6 (3)
C14—C15—C16120.7 (3)C20—N4—C23110.5 (3)
C14—C15—H15119.6C3—O1—C2117.7 (2)
C16—C15—H15119.6C19—O3—N3108.85 (19)
C15—C16—C11120.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N2i0.932.543.456 (3)169
C22—H22A···O30.972.523.218 (3)129
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H26N4O3
Mr418.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.1250 (7), 13.1425 (16), 13.7139 (16)
α, β, γ (°)93.600 (2), 95.514 (2), 95.637 (2)
V3)1090.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.992, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5453, 3800, 2842
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.187, 1.07
No. of reflections3800
No. of parameters281
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N2i0.932.543.456 (3)169
C22—H22A···O30.972.523.218 (3)129
Symmetry code: (i) x1, y+1, z.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuny, G. D., Yu, P. B., Laha, J. K., Xing, X. C., Liu, J. F., Lai, C. S., Deng, D. Y., Sachidanandan, C., Bloch, K. D. & Peterson, R. T. (2008). Bioorg. Med. Chem. Lett. 18, 4388–4392.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGe, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 78, 197–206.  CAS Google Scholar
First citationJohns, B. A., Gudmundsson, K. S., Turner, E. M., Allen, S. H., Samano, V. A., Ray, J. A., Freeman, G. A. F., Boyd, L. Jr, Sexton, C. J., Selleseth, D. W., Creechb, K. L. & Monirib, K. R. (2005). Bioorg. Med. Chem. 13, 2397–2411.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLanig, H., Utz, W. & Gmeiner, P. (2001). J. Med. Chem. 44, 1151–1157.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y. S., Park, S. M., Kim, H. M., Park, S. K., Lee, K., Lee, C. W. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 4688–4691.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeng, Q. Y., Yin, L., Liu, W., Jia, J., Zhan, F. X., Ge, Y. Q., Yang, H. & Wang, J. W. (2010). In preparation.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds