organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzoyl-4-hydr­­oxy-2H-1,2-benzo­thia­zine 1,1-dioxide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, cDepartment of Chemistry, Gomal University, Dera Ismail Khan, NWFP, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 11 March 2010; accepted 12 March 2010; online 17 March 2010)

There are two mol­ecules in the asymmetric unit of the title compound, C15H11NO4S. The heterocyclic thia­zine rings in both mol­ecules adopt half-chair conformations with the S and N atoms displaced by 0.455 (4) and 0.254 (4) Å, respectively, in one mol­ecule, and 0.480 (4) and 0.224 (5) Å in the other, on opposite sides of the mean planes formed by the remaining ring atoms. The crystal structure is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. In addition, intra­molecular O—H⋯O inter­actions are also present.

Related literature

For the biological activity of 1,2-benzothia­zine derivatives, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]); Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem. 14, 1171-1177.], 1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-496.]). For the synthesis of benzothia­zine derivatives, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]). For comparison of bond distancess, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.])

[Scheme 1]

Experimental

Crystal data
  • C15H11NO4S

  • Mr = 301.31

  • Monoclinic, P 21 /c

  • a = 13.8675 (4) Å

  • b = 7.6289 (2) Å

  • c = 25.7553 (9) Å

  • β = 102.4519 (12)°

  • V = 2660.66 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.12 × 0.11 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.970, Tmax = 0.980

  • 10424 measured reflections

  • 5971 independent reflections

  • 5100 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.09

  • 5971 reflections

  • 391 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O8 0.84 (3) 2.30 (3) 3.093 (3) 159 (2)
O3—H3O⋯O4 0.97 (3) 1.55 (3) 2.466 (2) 155 (2)
O7—H7O⋯O8 0.96 (3) 1.62 (3) 2.510 (2) 153 (3)
C2—H2⋯O5i 0.95 2.57 3.310 (3) 135
C13—H13⋯O1ii 0.95 2.43 3.235 (3) 143
C14—H14⋯O8ii 0.95 2.48 3.396 (3) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazine derivatives, e.g., 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamides 1,1-dioxides, are potent anti-inflammatory agents (Lombardino et al., 1971, 1973). In continuation of our research project on the development of new benzothiazine derivatives with bioactivity potential (Ahmad et al., 2010; Siddiqui et al., 2007), we report the synthesis and crystal structure of the title compound in this article.

The structure of the title compound is composed of two molecules, A (Fig. 1) and B (Fig. 2) in an asymmetric unit. The bond distances and angles are as expected (Allen, 2002) and agree with the cortresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine rings in both molecules adopt half chair conformation with atoms S and N displaced by 0.455 (4) and 0.254 (4) Å in molecule A and 0.480 (4) and 0.224 (5) Å, respectively, in molecule B, on the opposite sides from the mean planes formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types N—H···O and C—H···O. In addition, intramolecular interactions of the type O—H···O are also present consolidating the crystal packing; details have been provided in Tab. 1 and Fig. 3. It is intersing to note that N1 is involved in intermolecular and intramolecular interactions while N2 is devoid of any such interactions.

Related literature top

For the biological activity of 1,2-benzothiazine derivatives, see: Ahmad et al. (2010); Lombardino et al. (1971, 1973). For the synthesis of benzothiazine derivatives, see: Siddiqui et al. (2007). For comparison of bond distancess, see: Allen (2002). For related structures, see: Siddiqui et al. (2008)

Experimental top

N-phenacylsaccharin (5.0 g, 16.6 mmoles) was added to a solution of sodium metal (2.7 g) in dry methanol (50 ml). The mixture was subjected to reflux for half an hour. The contents of the flask were cooled to room temperature and then poured on ice cold HCl (50 ml, 5%). Off white precipitates of the title compound were formed which were filtered off and were washed with excess distilled water. Crystals suitable for crystallographic study were grown from a solution of chloroform/methanol (4:1); yield = 3.5 g, 70%; m.p. = 429-430 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 Å; the H-atoms bonded to N and O were allowed to refine. The Uiso(H) were allowed at 1.2Ueq(parent atom). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule A of the title compound with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. The molecule B of the title compound with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
[Figure 3] Fig. 3. A part of the unit cell showing intermolecular and intrmolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.
3-Benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide top
Crystal data top
C15H11NO4SF(000) = 1248
Mr = 301.31Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5113 reflections
a = 13.8675 (4) Åθ = 1.0–27.5°
b = 7.6289 (2) ŵ = 0.26 mm1
c = 25.7553 (9) ÅT = 173 K
β = 102.4519 (12)°Block, yellow
V = 2660.66 (14) Å30.12 × 0.11 × 0.08 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
5971 independent reflections
Radiation source: fine-focus sealed tube5100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1718
Tmin = 0.970, Tmax = 0.980k = 99
10424 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0348P)2 + 2.7188P]
where P = (Fo2 + 2Fc2)/3
5971 reflections(Δ/σ)max < 0.001
391 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C15H11NO4SV = 2660.66 (14) Å3
Mr = 301.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.8675 (4) ŵ = 0.26 mm1
b = 7.6289 (2) ÅT = 173 K
c = 25.7553 (9) Å0.12 × 0.11 × 0.08 mm
β = 102.4519 (12)°
Data collection top
Nonius KappaCCD
diffractometer
5971 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5100 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.034
10424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.40 e Å3
5971 reflectionsΔρmin = 0.45 e Å3
391 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26603 (4)0.49396 (7)0.15139 (2)0.02569 (13)
S20.26612 (4)0.00960 (7)0.14780 (2)0.02805 (13)
O10.34849 (11)0.3951 (2)0.16022 (6)0.0392 (4)
O20.26099 (11)0.6780 (2)0.16221 (6)0.0338 (4)
O30.00584 (11)0.5375 (2)0.10052 (6)0.0344 (4)
H3O0.0138 (19)0.580 (3)0.0643 (12)0.041*
O40.08737 (11)0.6136 (2)0.01058 (6)0.0365 (4)
O50.24183 (12)0.1891 (2)0.15448 (6)0.0367 (4)
O60.20854 (12)0.1254 (2)0.16478 (6)0.0362 (4)
O70.49817 (12)0.1805 (2)0.07325 (7)0.0386 (4)
H7O0.467 (2)0.200 (4)0.0367 (12)0.046*
O80.37534 (12)0.1864 (2)0.01398 (6)0.0392 (4)
N10.25817 (13)0.4634 (2)0.08997 (7)0.0255 (4)
H1N0.2839 (18)0.370 (3)0.0763 (10)0.031*
N20.26406 (13)0.0224 (2)0.08502 (7)0.0277 (4)
H2N0.2516 (18)0.123 (4)0.0752 (10)0.033*
C10.15563 (15)0.4015 (3)0.18693 (8)0.0257 (4)
C20.15101 (18)0.3292 (3)0.23688 (9)0.0333 (5)
H20.20860.32040.25110.040*
C30.0605 (2)0.2700 (3)0.26569 (9)0.0401 (6)
H30.05570.22240.30020.048*
C40.02274 (19)0.2799 (3)0.24437 (9)0.0391 (6)
H40.08410.23780.26430.047*
C50.01775 (17)0.3508 (3)0.19421 (9)0.0322 (5)
H50.07530.35610.17990.039*
C60.07235 (15)0.4143 (3)0.16478 (8)0.0254 (4)
C70.07853 (15)0.4912 (3)0.11193 (8)0.0252 (4)
C80.16798 (14)0.5127 (3)0.07560 (8)0.0237 (4)
C90.16839 (15)0.5735 (3)0.02290 (8)0.0259 (4)
C100.25834 (14)0.5793 (3)0.02069 (8)0.0244 (4)
C110.24653 (16)0.5335 (3)0.07145 (8)0.0281 (4)
H110.18360.49780.07650.034*
C120.32640 (16)0.5397 (3)0.11451 (9)0.0310 (5)
H120.31820.50730.14890.037*
C130.41781 (16)0.5932 (3)0.10724 (9)0.0334 (5)
H130.47240.59780.13670.040*
C140.43023 (16)0.6402 (3)0.05692 (9)0.0349 (5)
H140.49310.67780.05230.042*
C150.35116 (16)0.6326 (3)0.01342 (9)0.0306 (5)
H150.36000.66330.02100.037*
C160.39179 (16)0.0183 (3)0.17731 (8)0.0273 (4)
C170.42052 (18)0.0878 (3)0.22798 (9)0.0325 (5)
H170.37260.12770.24660.039*
C180.52034 (18)0.0982 (3)0.25096 (9)0.0375 (5)
H180.54140.14620.28560.045*
C190.58960 (18)0.0385 (3)0.22344 (10)0.0390 (5)
H190.65790.04470.23970.047*
C200.56077 (17)0.0299 (3)0.17279 (9)0.0345 (5)
H200.60910.07120.15460.041*
C210.46065 (16)0.0384 (3)0.14820 (8)0.0270 (4)
C220.42919 (16)0.0983 (3)0.09300 (9)0.0277 (4)
C230.33618 (15)0.0685 (3)0.06266 (8)0.0263 (4)
C240.31153 (16)0.1149 (3)0.00718 (9)0.0293 (4)
C250.21394 (16)0.0753 (3)0.02777 (8)0.0279 (4)
C260.21372 (17)0.0020 (3)0.07754 (9)0.0322 (5)
H260.27440.02790.08680.039*
C270.12542 (19)0.0269 (3)0.11332 (9)0.0380 (5)
H270.12520.08040.14660.046*
C280.03701 (18)0.0222 (3)0.10051 (10)0.0368 (5)
H280.02360.00370.12530.044*
C290.03689 (17)0.0983 (3)0.05150 (10)0.0355 (5)
H290.02370.13420.04320.043*
C300.12487 (16)0.1219 (3)0.01456 (9)0.0309 (5)
H300.12450.16950.01950.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0246 (3)0.0329 (3)0.0208 (2)0.0011 (2)0.00740 (19)0.00065 (19)
S20.0320 (3)0.0295 (3)0.0255 (3)0.0025 (2)0.0125 (2)0.0031 (2)
O10.0309 (8)0.0580 (11)0.0314 (8)0.0087 (8)0.0122 (7)0.0032 (8)
O20.0362 (8)0.0348 (8)0.0305 (8)0.0102 (7)0.0072 (7)0.0043 (7)
O30.0214 (7)0.0516 (10)0.0303 (8)0.0001 (7)0.0057 (6)0.0036 (7)
O40.0257 (8)0.0555 (10)0.0299 (8)0.0021 (7)0.0096 (6)0.0074 (7)
O50.0463 (9)0.0317 (8)0.0369 (9)0.0050 (7)0.0196 (7)0.0028 (7)
O60.0373 (9)0.0413 (9)0.0326 (8)0.0091 (7)0.0133 (7)0.0082 (7)
O70.0328 (8)0.0504 (10)0.0343 (9)0.0122 (8)0.0114 (7)0.0062 (8)
O80.0379 (9)0.0531 (10)0.0296 (8)0.0098 (8)0.0138 (7)0.0070 (7)
N10.0236 (8)0.0339 (9)0.0192 (8)0.0037 (7)0.0052 (6)0.0028 (7)
N20.0320 (10)0.0278 (9)0.0252 (9)0.0069 (8)0.0101 (7)0.0008 (7)
C10.0305 (10)0.0254 (10)0.0206 (9)0.0019 (8)0.0043 (8)0.0022 (8)
C20.0451 (13)0.0304 (11)0.0253 (11)0.0003 (10)0.0096 (9)0.0007 (9)
C30.0595 (16)0.0334 (12)0.0246 (11)0.0095 (11)0.0029 (10)0.0048 (9)
C40.0473 (14)0.0322 (12)0.0320 (12)0.0120 (10)0.0047 (10)0.0006 (9)
C50.0332 (11)0.0314 (11)0.0294 (11)0.0074 (9)0.0011 (9)0.0053 (9)
C60.0290 (10)0.0226 (10)0.0237 (10)0.0032 (8)0.0036 (8)0.0032 (8)
C70.0249 (10)0.0275 (10)0.0242 (10)0.0024 (8)0.0077 (8)0.0041 (8)
C80.0226 (9)0.0285 (10)0.0207 (9)0.0001 (8)0.0064 (7)0.0025 (8)
C90.0239 (10)0.0294 (10)0.0247 (10)0.0030 (8)0.0062 (8)0.0002 (8)
C100.0246 (10)0.0270 (10)0.0222 (10)0.0026 (8)0.0064 (8)0.0020 (8)
C110.0304 (11)0.0291 (10)0.0257 (10)0.0052 (8)0.0081 (8)0.0016 (8)
C120.0350 (11)0.0323 (11)0.0241 (10)0.0024 (9)0.0025 (9)0.0039 (8)
C130.0295 (11)0.0357 (12)0.0313 (12)0.0021 (9)0.0019 (9)0.0002 (9)
C140.0257 (10)0.0437 (13)0.0353 (12)0.0075 (10)0.0067 (9)0.0025 (10)
C150.0299 (11)0.0372 (12)0.0259 (10)0.0064 (9)0.0089 (9)0.0007 (9)
C160.0327 (11)0.0238 (10)0.0262 (10)0.0042 (8)0.0085 (8)0.0033 (8)
C170.0428 (12)0.0281 (11)0.0274 (11)0.0034 (9)0.0098 (9)0.0017 (9)
C180.0494 (15)0.0318 (12)0.0282 (11)0.0005 (10)0.0018 (10)0.0030 (9)
C190.0361 (12)0.0381 (13)0.0394 (13)0.0030 (10)0.0005 (10)0.0020 (10)
C200.0351 (12)0.0343 (12)0.0352 (12)0.0036 (9)0.0103 (10)0.0059 (10)
C210.0326 (11)0.0237 (10)0.0258 (10)0.0029 (8)0.0090 (8)0.0026 (8)
C220.0316 (11)0.0262 (10)0.0282 (11)0.0041 (8)0.0128 (9)0.0019 (8)
C230.0304 (10)0.0264 (10)0.0252 (10)0.0027 (8)0.0128 (8)0.0000 (8)
C240.0344 (11)0.0288 (11)0.0270 (11)0.0014 (9)0.0113 (9)0.0006 (8)
C250.0357 (11)0.0242 (10)0.0253 (10)0.0021 (8)0.0101 (9)0.0043 (8)
C260.0359 (12)0.0363 (12)0.0261 (11)0.0039 (9)0.0107 (9)0.0013 (9)
C270.0462 (14)0.0391 (13)0.0272 (11)0.0012 (11)0.0050 (10)0.0018 (10)
C280.0369 (12)0.0381 (13)0.0334 (12)0.0016 (10)0.0029 (10)0.0073 (10)
C290.0342 (12)0.0343 (12)0.0409 (13)0.0023 (10)0.0148 (10)0.0094 (10)
C300.0378 (12)0.0283 (11)0.0292 (11)0.0003 (9)0.0130 (9)0.0017 (9)
Geometric parameters (Å, º) top
S1—O11.4283 (16)C11—C121.389 (3)
S1—O21.4303 (17)C11—H110.9500
S1—N11.6257 (17)C12—C131.382 (3)
S1—C11.753 (2)C12—H120.9500
S2—O61.4281 (16)C13—C141.391 (3)
S2—O51.4296 (17)C13—H130.9500
S2—N21.6294 (19)C14—C151.390 (3)
S2—C161.757 (2)C14—H140.9500
O3—C71.314 (2)C15—H150.9500
O3—H3O0.97 (3)C16—C171.385 (3)
O4—C91.269 (2)C16—C211.404 (3)
O7—C221.333 (2)C17—C181.385 (3)
O7—H7O0.96 (3)C17—H170.9500
O8—C241.259 (3)C18—C191.388 (3)
N1—C81.429 (2)C18—H180.9500
N1—H1N0.84 (3)C19—C201.382 (3)
N2—C231.436 (3)C19—H190.9500
N2—H2N0.82 (3)C20—C211.398 (3)
C1—C21.389 (3)C20—H200.9500
C1—C61.397 (3)C21—C221.467 (3)
C2—C31.389 (3)C22—C231.375 (3)
C2—H20.9500C23—C241.440 (3)
C3—C41.383 (4)C24—C251.486 (3)
C3—H30.9500C25—C301.396 (3)
C4—C51.388 (3)C25—C261.398 (3)
C4—H40.9500C26—C271.382 (3)
C5—C61.401 (3)C26—H260.9500
C5—H50.9500C27—C281.388 (3)
C6—C71.468 (3)C27—H270.9500
C7—C81.393 (3)C28—C291.390 (3)
C8—C91.433 (3)C28—H280.9500
C9—C101.488 (3)C29—C301.388 (3)
C10—C111.397 (3)C29—H290.9500
C10—C151.400 (3)C30—H300.9500
O1—S1—O2119.62 (10)C11—C12—H12120.0
O1—S1—N1107.65 (10)C12—C13—C14120.2 (2)
O2—S1—N1108.64 (10)C12—C13—H13119.9
O1—S1—C1110.09 (10)C14—C13—H13119.9
O2—S1—C1107.01 (10)C15—C14—C13120.4 (2)
N1—S1—C1102.49 (9)C15—C14—H14119.8
O6—S2—O5119.47 (10)C13—C14—H14119.8
O6—S2—N2107.73 (10)C14—C15—C10119.5 (2)
O5—S2—N2107.98 (10)C14—C15—H15120.2
O6—S2—C16110.37 (10)C10—C15—H15120.2
O5—S2—C16107.55 (10)C17—C16—C21122.1 (2)
N2—S2—C16102.38 (10)C17—C16—S2120.70 (17)
C7—O3—H3O103.1 (15)C21—C16—S2117.20 (17)
C22—O7—H7O103.9 (16)C16—C17—C18118.8 (2)
C8—N1—S1117.40 (14)C16—C17—H17120.6
C8—N1—H1N115.7 (17)C18—C17—H17120.6
S1—N1—H1N114.6 (17)C17—C18—C19120.1 (2)
C23—N2—S2117.47 (15)C17—C18—H18120.0
C23—N2—H2N116.7 (18)C19—C18—H18120.0
S2—N2—H2N114.0 (18)C20—C19—C18121.0 (2)
C2—C1—C6121.9 (2)C20—C19—H19119.5
C2—C1—S1120.28 (17)C18—C19—H19119.5
C6—C1—S1117.65 (15)C19—C20—C21120.2 (2)
C1—C2—C3118.7 (2)C19—C20—H20119.9
C1—C2—H2120.7C21—C20—H20119.9
C3—C2—H2120.7C20—C21—C16117.9 (2)
C4—C3—C2120.4 (2)C20—C21—C22120.82 (19)
C4—C3—H3119.8C16—C21—C22121.28 (19)
C2—C3—H3119.8O7—C22—C23121.55 (19)
C3—C4—C5120.8 (2)O7—C22—C21115.35 (19)
C3—C4—H4119.6C23—C22—C21123.07 (18)
C5—C4—H4119.6C22—C23—N2120.07 (18)
C4—C5—C6119.9 (2)C22—C23—C24121.07 (18)
C4—C5—H5120.1N2—C23—C24118.69 (19)
C6—C5—H5120.1O8—C24—C23119.8 (2)
C1—C6—C5118.30 (19)O8—C24—C25117.33 (19)
C1—C6—C7121.23 (18)C23—C24—C25122.79 (18)
C5—C6—C7120.46 (19)C30—C25—C26119.9 (2)
O3—C7—C8121.67 (19)C30—C25—C24122.61 (19)
O3—C7—C6115.97 (18)C26—C25—C24117.28 (19)
C8—C7—C6122.37 (18)C27—C26—C25120.1 (2)
C7—C8—N1119.84 (18)C27—C26—H26119.9
C7—C8—C9119.69 (18)C25—C26—H26119.9
N1—C8—C9120.35 (17)C26—C27—C28120.0 (2)
O4—C9—C8119.47 (18)C26—C27—H27120.0
O4—C9—C10116.58 (18)C28—C27—H27120.0
C8—C9—C10123.76 (18)C27—C28—C29120.2 (2)
C11—C10—C15119.64 (19)C27—C28—H28119.9
C11—C10—C9116.76 (18)C29—C28—H28119.9
C15—C10—C9123.57 (18)C30—C29—C28120.3 (2)
C12—C11—C10120.3 (2)C30—C29—H29119.9
C12—C11—H11119.8C28—C29—H29119.9
C10—C11—H11119.8C29—C30—C25119.5 (2)
C13—C12—C11119.9 (2)C29—C30—H30120.2
C13—C12—H12120.0C25—C30—H30120.2
O1—S1—N1—C8164.69 (16)C13—C14—C15—C100.9 (4)
O2—S1—N1—C864.40 (17)C11—C10—C15—C140.4 (3)
C1—S1—N1—C848.61 (18)C9—C10—C15—C14177.5 (2)
O6—S2—N2—C23164.50 (16)O6—S2—C16—C1733.0 (2)
O5—S2—N2—C2365.20 (18)O5—S2—C16—C1798.90 (19)
C16—S2—N2—C2348.12 (18)N2—S2—C16—C17147.47 (18)
O1—S1—C1—C236.5 (2)O6—S2—C16—C21149.25 (16)
O2—S1—C1—C294.97 (19)O5—S2—C16—C2178.84 (18)
N1—S1—C1—C2150.81 (18)N2—S2—C16—C2134.79 (18)
O1—S1—C1—C6147.68 (16)C21—C16—C17—C181.4 (3)
O2—S1—C1—C680.85 (18)S2—C16—C17—C18176.28 (17)
N1—S1—C1—C633.37 (18)C16—C17—C18—C190.4 (3)
C6—C1—C2—C30.8 (3)C17—C18—C19—C200.8 (4)
S1—C1—C2—C3174.87 (17)C18—C19—C20—C210.6 (4)
C1—C2—C3—C41.3 (4)C19—C20—C21—C162.2 (3)
C2—C3—C4—C50.7 (4)C19—C20—C21—C22175.4 (2)
C3—C4—C5—C60.5 (3)C17—C16—C21—C202.7 (3)
C2—C1—C6—C50.4 (3)S2—C16—C21—C20175.06 (16)
S1—C1—C6—C5176.13 (16)C17—C16—C21—C22174.9 (2)
C2—C1—C6—C7180.0 (2)S2—C16—C21—C227.4 (3)
S1—C1—C6—C74.2 (3)C20—C21—C22—O715.2 (3)
C4—C5—C6—C11.0 (3)C16—C21—C22—O7167.30 (19)
C4—C5—C6—C7179.4 (2)C20—C21—C22—C23163.1 (2)
C1—C6—C7—O3163.40 (19)C16—C21—C22—C2314.4 (3)
C5—C6—C7—O317.0 (3)O7—C22—C23—N2179.2 (2)
C1—C6—C7—C817.3 (3)C21—C22—C23—N21.1 (3)
C5—C6—C7—C8162.4 (2)O7—C22—C23—C244.1 (3)
O3—C7—C8—N1178.91 (18)C21—C22—C23—C24174.0 (2)
C6—C7—C8—N11.8 (3)S2—N2—C23—C2234.4 (3)
O3—C7—C8—C95.1 (3)S2—N2—C23—C24150.31 (17)
C6—C7—C8—C9174.25 (19)C22—C23—C24—O81.1 (3)
S1—N1—C8—C735.2 (3)N2—C23—C24—O8176.3 (2)
S1—N1—C8—C9148.77 (16)C22—C23—C24—C25176.2 (2)
C7—C8—C9—O42.7 (3)N2—C23—C24—C251.0 (3)
N1—C8—C9—O4178.73 (19)O8—C24—C25—C30130.8 (2)
C7—C8—C9—C10172.00 (19)C23—C24—C25—C3051.8 (3)
N1—C8—C9—C104.0 (3)O8—C24—C25—C2643.7 (3)
O4—C9—C10—C1133.7 (3)C23—C24—C25—C26133.7 (2)
C8—C9—C10—C11141.1 (2)C30—C25—C26—C271.0 (3)
O4—C9—C10—C15144.3 (2)C24—C25—C26—C27175.7 (2)
C8—C9—C10—C1540.9 (3)C25—C26—C27—C282.1 (4)
C15—C10—C11—C120.3 (3)C26—C27—C28—C290.9 (4)
C9—C10—C11—C12178.4 (2)C27—C28—C29—C301.5 (3)
C10—C11—C12—C130.6 (3)C28—C29—C30—C252.6 (3)
C11—C12—C13—C140.2 (4)C26—C25—C30—C291.3 (3)
C12—C13—C14—C150.6 (4)C24—C25—C30—C29173.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O80.84 (3)2.30 (3)3.093 (3)159 (2)
O3—H3O···O40.97 (3)1.55 (3)2.466 (2)155 (2)
O7—H7O···O80.96 (3)1.62 (3)2.510 (2)153 (3)
C2—H2···O5i0.952.573.310 (3)135
C13—H13···O1ii0.952.433.235 (3)143
C14—H14···O8ii0.952.483.396 (3)162
C15—H15···N10.952.532.990 (3)110
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11NO4S
Mr301.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.8675 (4), 7.6289 (2), 25.7553 (9)
β (°) 102.4519 (12)
V3)2660.66 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.12 × 0.11 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
10424, 5971, 5100
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.09
No. of reflections5971
No. of parameters391
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.45

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O80.84 (3)2.30 (3)3.093 (3)159 (2)
O3—H3O···O40.97 (3)1.55 (3)2.466 (2)155 (2)
O7—H7O···O80.96 (3)1.62 (3)2.510 (2)153 (3)
C2—H2···O5i0.952.573.310 (3)134.6
C13—H13···O1ii0.952.433.235 (3)142.7
C14—H14···O8ii0.952.483.396 (3)161.9
C15—H15···N10.952.532.990 (3)110.0
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem. 14, 1171–1177.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds