organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzoyl-4-hydr­­oxy-2-methyl-2H-1,2-benzo­thia­zine 1,1-dioxide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore-54600, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, cDepartment of Chemistry, Gomal University, Dera Ismail Khan, NWFP, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 19 March 2010; accepted 24 March 2010; online 27 March 2010)

In the title mol­ecule, C16H13NO4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.410 (3) and 0.299 (3) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The crystal structure is stabilized by inter­molecular hydrogen bonds of the types O—H⋯O and C—H⋯O; the former result in dimers lying about inversion centers and the latter form chains of mol­ecules running along the c axis. In addition, intra­molecular O—H⋯O links are present.

Related literature

For 1,2-benzothia­zine derivatives as anti-inflammatory drugs (NSAIDs), see: Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem. 14, 1171-1177.]); Soler (1985[Soler, J. E. (1985). US Patent No. 4 563 452.]); Carty et al. (1993[Carty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissman, A. (1993). Agents Actions, 39, 157-165.]); Turck et al. (1995[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270-276.]). For the synthesis of benzothia­zine derivatives, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]); Ahmad, Siddiqui, Zia-ur-Rehman et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]); Ahmad, Siddiqui, Rizvi et al. (2010[Ahmad, M., Siddiqui, H. L., Rizvi, U. F., Ahmad, S. & Parvez, M. (2010). Acta Cryst. E66, o862.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO4S

  • Mr = 315.33

  • Triclinic, [P \overline 1]

  • a = 6.8342 (3) Å

  • b = 9.9085 (3) Å

  • c = 10.7234 (4) Å

  • α = 83.257 (2)°

  • β = 79.481 (2)°

  • γ = 85.113 (2)°

  • V = 707.50 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.971, Tmax = 0.981

  • 7177 measured reflections

  • 4080 independent reflections

  • 3665 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.09

  • 4080 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.84 1.80 2.5365 (15) 146
O3—H3O⋯O1i 0.84 2.56 3.0108 (15) 115
C3—H3⋯O1ii 0.95 2.50 3.2627 (18) 138
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxicam, a class of non steroidal anti-inflammatory drugs (NSAIDs) consists of benzothiazine derivatives which are found to be potent anti-inflammatory and analgesic agents, e.g., piroxicam (Lombardino et al., 1971), droxicam (Soler, 1985), ampiroxicam (Carty et al., 1993), meloxicam (Turck et al., 1995), etc. In continuation of our research on potential biologically active benzothiazine compounds (Siddiqui et al., 2007; Ahmad, Siddiqui, Zia-ur-Rehman et al., 2010), we report the synthesis and crystal structure of the title compound in this article.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; Ahmad, Siddiqui, Rizvi et al., 2010). The heterocyclic thiazine ring adopts half chair conformation with atoms S1 and N1 displaced by 0.410 (3) and 0.299 (3) Å on the opposite sides from the mean planes formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types O—H···O and C—H···O; the former result in dimers lying about inversion centers and the later form chains of molecules running along the c-axis (Tab. 1 and Fig. 2). In addition, intramolecular interactions of the types O—H···O and C—H···N are also present consolidating the crystal packing.

Related literature top

For 1,2-benzothiazine derivatives as anti-inflammatory drugs (NSAIDs), see: Lombardino et al. (1971); Soler (1985); Carty et al. (1993); Turck et al. (1995). For the synthesis of benzothiazine derivatives, see: Siddiqui et al. (2007); Ahmad, Siddiqui, Zia-ur-Rehman et al. (2010). For related structures, see: Siddiqui et al. (2008); Ahmad, Siddiqui, Rizvi et al. (2010).

Experimental top

An aqueous sodium hydroxide solution (1.33 g in 10 ml water) was slowly added to a solution of 3-benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide (5.0 g, 16.6 mmole) in acetone (50 ml). Dimethylsulfate (4.03 g, 32 mmole) was added drop wise and the mixture was stirred for 30 minutes. The contents of the flask were acidified to pH 3.0 by the addition of 5% HCl. White precipitates of the title compound were formed which were collected and washed with excess distilled water. Crystals suitable for crystallographic study were grown from a solution of chloroform/methanol (4:1); yield = 3.5 g, 70%; m.p. = 420-421 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with O—H = 0.84 Å and C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(O/C). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. A part of the unit cell showing intermolecular and intrmolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.
3-Benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide top
Crystal data top
C16H13NO4SZ = 2
Mr = 315.33F(000) = 328
Triclinic, P1Dx = 1.480 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8342 (3) ÅCell parameters from 3532 reflections
b = 9.9085 (3) Åθ = 1.0–30.0°
c = 10.7234 (4) ŵ = 0.25 mm1
α = 83.257 (2)°T = 173 K
β = 79.481 (2)°Block, pale-yellow
γ = 85.113 (2)°0.12 × 0.10 × 0.08 mm
V = 707.50 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
4080 independent reflections
Radiation source: fine-focus sealed tube3665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.971, Tmax = 0.981k = 1313
7177 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3608P]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H13NO4Sγ = 85.113 (2)°
Mr = 315.33V = 707.50 (5) Å3
Triclinic, P1Z = 2
a = 6.8342 (3) ÅMo Kα radiation
b = 9.9085 (3) ŵ = 0.25 mm1
c = 10.7234 (4) ÅT = 173 K
α = 83.257 (2)°0.12 × 0.10 × 0.08 mm
β = 79.481 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4080 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3665 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.981Rint = 0.022
7177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
4080 reflectionsΔρmin = 0.34 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20282 (5)0.24470 (3)0.28051 (3)0.02305 (10)
O10.00548 (16)0.28521 (10)0.28975 (11)0.0279 (2)
O20.29460 (19)0.15793 (11)0.18540 (11)0.0339 (3)
O30.23671 (18)0.47875 (11)0.58638 (10)0.0290 (2)
H3O0.23330.56210.56040.044*
O40.24683 (18)0.68733 (10)0.42430 (10)0.0303 (2)
N10.32262 (17)0.38365 (11)0.25903 (11)0.0218 (2)
C10.2435 (2)0.17087 (13)0.43178 (14)0.0230 (3)
C20.2400 (2)0.03080 (14)0.46264 (16)0.0284 (3)
H20.22440.02680.40080.034*
C30.2596 (2)0.02341 (15)0.58521 (17)0.0321 (3)
H30.25700.11890.60780.039*
C40.2832 (2)0.06112 (16)0.67508 (16)0.0325 (3)
H40.29650.02290.75880.039*
C50.2875 (2)0.20118 (15)0.64393 (14)0.0279 (3)
H50.30350.25820.70620.033*
C60.2683 (2)0.25797 (13)0.52084 (13)0.0228 (3)
C70.2650 (2)0.40639 (13)0.48734 (13)0.0218 (2)
C80.2777 (2)0.46608 (13)0.36361 (13)0.0205 (2)
C90.2466 (2)0.61275 (13)0.33796 (13)0.0222 (2)
C100.5305 (2)0.38032 (17)0.19048 (16)0.0336 (3)
H10A0.56880.47360.16240.040*
H10B0.54190.32960.11610.040*
H10C0.61890.33560.24740.040*
C110.2056 (2)0.67762 (13)0.21160 (13)0.0227 (3)
C120.0803 (2)0.61998 (14)0.14609 (14)0.0254 (3)
H120.03300.53250.17580.030*
C130.0252 (2)0.69159 (15)0.03694 (14)0.0283 (3)
H130.06190.65350.00710.034*
C140.0968 (3)0.81858 (15)0.00811 (15)0.0304 (3)
H140.05870.86680.08280.036*
C150.2239 (3)0.87500 (15)0.05592 (15)0.0309 (3)
H150.27520.96090.02400.037*
C160.2759 (2)0.80577 (14)0.16662 (14)0.0270 (3)
H160.35950.84560.21190.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02533 (17)0.02010 (16)0.02556 (17)0.00128 (11)0.00723 (12)0.00570 (11)
O10.0246 (5)0.0277 (5)0.0338 (6)0.0033 (4)0.0113 (4)0.0022 (4)
O20.0448 (7)0.0258 (5)0.0331 (6)0.0001 (4)0.0074 (5)0.0127 (4)
O30.0404 (6)0.0251 (5)0.0231 (5)0.0006 (4)0.0084 (4)0.0063 (4)
O40.0444 (6)0.0224 (5)0.0263 (5)0.0038 (4)0.0088 (4)0.0065 (4)
N10.0218 (5)0.0210 (5)0.0224 (5)0.0014 (4)0.0020 (4)0.0053 (4)
C10.0189 (6)0.0221 (6)0.0281 (7)0.0007 (4)0.0050 (5)0.0017 (5)
C20.0218 (6)0.0220 (6)0.0412 (8)0.0019 (5)0.0061 (6)0.0017 (5)
C30.0234 (7)0.0245 (6)0.0460 (9)0.0031 (5)0.0055 (6)0.0068 (6)
C40.0278 (7)0.0326 (7)0.0337 (8)0.0019 (6)0.0045 (6)0.0093 (6)
C50.0261 (7)0.0311 (7)0.0256 (7)0.0004 (5)0.0053 (5)0.0012 (5)
C60.0194 (6)0.0230 (6)0.0254 (6)0.0004 (4)0.0040 (5)0.0010 (5)
C70.0212 (6)0.0226 (6)0.0226 (6)0.0010 (4)0.0054 (5)0.0038 (5)
C80.0209 (6)0.0202 (5)0.0211 (6)0.0011 (4)0.0041 (4)0.0042 (4)
C90.0227 (6)0.0211 (6)0.0234 (6)0.0033 (4)0.0039 (5)0.0032 (4)
C100.0259 (7)0.0364 (8)0.0373 (8)0.0034 (6)0.0036 (6)0.0123 (6)
C110.0255 (6)0.0200 (6)0.0222 (6)0.0002 (5)0.0033 (5)0.0033 (4)
C120.0278 (7)0.0232 (6)0.0258 (6)0.0021 (5)0.0054 (5)0.0036 (5)
C130.0319 (7)0.0287 (7)0.0261 (7)0.0005 (5)0.0093 (6)0.0046 (5)
C140.0391 (8)0.0266 (7)0.0249 (7)0.0036 (6)0.0077 (6)0.0012 (5)
C150.0404 (8)0.0216 (6)0.0301 (7)0.0031 (5)0.0058 (6)0.0005 (5)
C160.0312 (7)0.0217 (6)0.0294 (7)0.0034 (5)0.0070 (6)0.0036 (5)
Geometric parameters (Å, º) top
S1—O21.4329 (11)C6—C71.4716 (18)
S1—O11.4346 (11)C7—C81.3784 (19)
S1—N11.6333 (12)C8—C91.4518 (18)
S1—C11.7593 (14)C9—C111.4936 (19)
O3—C71.3265 (16)C10—H10A0.9800
O3—H3O0.8400C10—H10B0.9800
O4—C91.2509 (16)C10—H10C0.9800
N1—C81.4373 (16)C11—C121.3966 (19)
N1—C101.4753 (18)C11—C161.3969 (19)
C1—C21.3896 (19)C12—C131.391 (2)
C1—C61.4011 (19)C12—H120.9500
C2—C31.386 (2)C13—C141.390 (2)
C2—H20.9500C13—H130.9500
C3—C41.388 (2)C14—C151.389 (2)
C3—H30.9500C14—H140.9500
C4—C51.390 (2)C15—C161.388 (2)
C4—H40.9500C15—H150.9500
C5—C61.3974 (19)C16—H160.9500
C5—H50.9500
O2—S1—O1118.95 (7)C7—C8—N1120.26 (11)
O2—S1—N1108.49 (7)C7—C8—C9120.23 (12)
O1—S1—N1107.25 (6)N1—C8—C9119.51 (12)
O2—S1—C1109.77 (7)O4—C9—C8119.85 (12)
O1—S1—C1107.98 (6)O4—C9—C11118.55 (12)
N1—S1—C1103.26 (6)C8—C9—C11121.55 (12)
C7—O3—H3O109.5N1—C10—H10A109.5
C8—N1—C10116.02 (11)N1—C10—H10B109.5
C8—N1—S1114.56 (9)H10A—C10—H10B109.5
C10—N1—S1118.88 (9)N1—C10—H10C109.5
C2—C1—C6121.72 (13)H10A—C10—H10C109.5
C2—C1—S1120.23 (11)H10B—C10—H10C109.5
C6—C1—S1117.96 (10)C12—C11—C16119.90 (13)
C3—C2—C1118.87 (14)C12—C11—C9121.08 (12)
C3—C2—H2120.6C16—C11—C9118.60 (12)
C1—C2—H2120.6C13—C12—C11119.51 (13)
C2—C3—C4120.34 (14)C13—C12—H12120.2
C2—C3—H3119.8C11—C12—H12120.2
C4—C3—H3119.8C14—C13—C12120.42 (14)
C3—C4—C5120.73 (15)C14—C13—H13119.8
C3—C4—H4119.6C12—C13—H13119.8
C5—C4—H4119.6C15—C14—C13120.07 (14)
C4—C5—C6119.87 (15)C15—C14—H14120.0
C4—C5—H5120.1C13—C14—H14120.0
C6—C5—H5120.1C16—C15—C14119.93 (14)
C5—C6—C1118.46 (13)C16—C15—H15120.0
C5—C6—C7120.69 (13)C14—C15—H15120.0
C1—C6—C7120.79 (12)C15—C16—C11120.14 (14)
O3—C7—C8122.43 (12)C15—C16—H16119.9
O3—C7—C6114.62 (12)C11—C16—H16119.9
C8—C7—C6122.84 (12)
O2—S1—N1—C8166.36 (9)C1—C6—C7—C813.2 (2)
O1—S1—N1—C863.98 (11)O3—C7—C8—N1175.55 (12)
C1—S1—N1—C849.92 (11)C6—C7—C8—N18.6 (2)
O2—S1—N1—C1022.94 (13)O3—C7—C8—C94.2 (2)
O1—S1—N1—C10152.60 (11)C6—C7—C8—C9171.61 (12)
C1—S1—N1—C1093.50 (12)C10—N1—C8—C7100.95 (16)
O2—S1—C1—C237.60 (14)S1—N1—C8—C743.55 (16)
O1—S1—C1—C293.50 (12)C10—N1—C8—C978.84 (16)
N1—S1—C1—C2153.13 (11)S1—N1—C8—C9136.66 (11)
O2—S1—C1—C6145.77 (11)C7—C8—C9—O413.9 (2)
O1—S1—C1—C683.13 (12)N1—C8—C9—O4165.87 (13)
N1—S1—C1—C630.25 (12)C7—C8—C9—C11163.55 (13)
C6—C1—C2—C30.6 (2)N1—C8—C9—C1116.66 (19)
S1—C1—C2—C3175.86 (11)O4—C9—C11—C12137.23 (14)
C1—C2—C3—C40.3 (2)C8—C9—C11—C1240.27 (19)
C2—C3—C4—C50.0 (2)O4—C9—C11—C1635.29 (19)
C3—C4—C5—C60.1 (2)C8—C9—C11—C16147.21 (14)
C4—C5—C6—C10.4 (2)C16—C11—C12—C130.6 (2)
C4—C5—C6—C7177.71 (13)C9—C11—C12—C13171.87 (13)
C2—C1—C6—C50.7 (2)C11—C12—C13—C141.1 (2)
S1—C1—C6—C5175.85 (10)C12—C13—C14—C150.1 (2)
C2—C1—C6—C7178.00 (13)C13—C14—C15—C161.4 (2)
S1—C1—C6—C71.42 (18)C14—C15—C16—C112.0 (2)
C5—C6—C7—O314.30 (19)C12—C11—C16—C151.0 (2)
C1—C6—C7—O3162.91 (13)C9—C11—C16—C15173.59 (13)
C5—C6—C7—C8169.55 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.802.5365 (15)146
O3—H3O···O1i0.842.563.0108 (15)115
C3—H3···O1ii0.952.503.2627 (18)138
C12—H12···N10.952.593.0163 (18)107
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NO4S
Mr315.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.8342 (3), 9.9085 (3), 10.7234 (4)
α, β, γ (°)83.257 (2), 79.481 (2), 85.113 (2)
V3)707.50 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.971, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
7177, 4080, 3665
Rint0.022
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.09
No. of reflections4080
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.802.5365 (15)146
O3—H3O···O1i0.842.563.0108 (15)115
C3—H3···O1ii0.952.503.2627 (18)138
C12—H12···N10.952.593.0163 (18)107
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

HLS is grateful to Institute of Chemistry, University of the Punjab, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Rizvi, U. F., Ahmad, S. & Parvez, M. (2010). Acta Cryst. E66, o862.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCarty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissman, A. (1993). Agents Actions, 39, 157–165.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem. 14, 1171–1177.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSoler, J. E. (1985). US Patent No. 4 563 452.  Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270–276.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds