metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aqua­(μ4-benzene-1,3,5-tri­carboxyl­ato)sodium(I)zinc(II)]

aJilin Agricultural Science and Technology College, Jilin 132101, People's Republic of China
*Correspondence e-mail: jilindxw@yahoo.com.cn

(Received 3 February 2010; accepted 11 March 2010; online 17 March 2010)

In the title compound, [NaZn(C9H3O6)(H2O)4]n, the ZnII atom is six-coordinated by four O atoms from two different benzene-1,3,5-tricarboxyl­ate anions and two water O atoms in a distorted tetragonal-bipyramidal geometry and the NaI atom is five-coordinated by three O atoms from three different benzene-1,3,5-tricarboxyl­ate anions and two water O atoms in a distorted trigonal-bipyramidal geometry. The benzene-1,3,5-tricarboxyl­ate anion bridges two ZnII atoms and two NaI atoms, resulting in the formation of a two-dimensional layer structure. Inter­molecular O—H⋯O hydrogen-bonding inter­actions generate a three-dimensional superamolecular structure.

Related literature

For related sructures, see: Chui et al. (1999[Chui, S. S. Y., Siu, A. & Williams, I. D. (1999). Acta Cryst. C55, 194-196.]); Majumder et al. (2005[Majumder, A., Shit, S., Choudhury, C. R., Batten, S. R., Pilet, G., Daro, N., Sutter, J.-P., Chattopadhyay, N. & Mitra, S. (2005). Inorg. Chim. Acta, 358, 3855-3864.]).

[Scheme 1]

Experimental

Crystal data
  • [NaZn(C9H3O6)(H2O)4]

  • Mr = 367.54

  • Monoclinic, C 2/c

  • a = 23.425 (5) Å

  • b = 10.146 (2) Å

  • c = 14.427 (3) Å

  • β = 126.50 (3)°

  • V = 2756.3 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.765, Tmax = 0.876

  • 13077 measured reflections

  • 3348 independent reflections

  • 2119 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.187

  • S = 0.99

  • 3348 reflections

  • 214 parameters

  • 106 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.68 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5i 0.93 (5) 2.35 (8) 3.090 (6) 137 (9)
O2W—H2WA⋯O2ii 0.93 (5) 2.28 (9) 2.998 (6) 133 (9)
O3W—H3WA⋯O6 0.85 (5) 2.11 (7) 2.747 (7) 132 (7)
O4W—H4WB⋯O4iii 1.00 (5) 1.71 (5) 2.686 (8) 166 (8)
O4W—H4WA⋯O3Wiv 0.85 (4) 2.37 (7) 2.948 (8) 126 (9)
Symmetry codes: (i) [-x+1, y-1, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

In the title compound, (I), each ZnII cation is six-coordinated by five O atoms from two different benzene-1,3,5-tricarboxylate anions and two water molecules. The Zn—O (carboxylate) distance in I is similar to the equivalent value in a related compounds (Majumder et al. 2005). Each NaI cation is five coordinated by three oxygen atoms from three different benzene-1,3,5-tricarboxylate anions and two water molecules. The Na—O (carboxylate) distance is similar to the related compounds (Chui et al. 1999) (Fig. 1). The ZnII centers and the NaI centers are bridged by benzene-1,3,5-tricarboxylate anions, resulting in a two dimensional layer (Fig. 2). In (I), there are intra and intermolecular O-H···O hydrogen bonds involving the water molecules and the oxygen atoms of the carboxylate groups (Table 1). The adjacent layers are bridged by the hydrogen bonds, and the whole structure displays a three dimensional supramolecular framework (Fig. 3).

Related literature top

For related sructures, see: Chui et al. (1999); Majumder et al. (2005).

Experimental top

The mixture of of benzene-1,3,5-tricarboxylate acid (0.063 g, 0.3 mmol), NaOH (0.024 g, 0.25 mmol), Zn(Ac)2 (0.066 g, 0.3 mmol), and 10 ml H2O was sealed in 18 ml Teflon-lined stainless steel container. The container was heated to 150 °C and held at that temperature for 72 h, then cooled to room temperature at a rate of 10 °C.h-1. And then crystals of the title compound were isolated.

Refinement top

C-bound H-atoms were geometrically positioned (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq (C). The H atoms of the water molecules were located in a difference map, and were refined with distance restraints of O—H = 0.85 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the coordination environments for ZnII atom and NaI atom in (I), showing 30% probability displacement ellipsoids, crystalline water molecules and the atomic numbering scheme [symmetry code: (i) 1-x, y, 1.5-z; (ii) x-0.5, 1.5-y, z-0.5; (iii) x, y-1, z]. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The two dimensional layer of (I). The H atoms have been omitted.
[Figure 3] Fig. 3. The supramolecular framework of I.
Poly[tetraaqua(µ4-benzene-1,3,5-tricarboxylato)sodium(I)zinc(II)] top
Crystal data top
[NaZn(C9H3O6)(H2O)4]F(000) = 1488
Mr = 367.54Dx = 1.771 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3348 reflections
a = 23.425 (5) Åθ = 4.7–29.2°
b = 10.146 (2) ŵ = 1.86 mm1
c = 14.427 (3) ÅT = 293 K
β = 126.50 (3)°Block, colorless
V = 2756.3 (15) Å30.23 × 0.22 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
3348 independent reflections
Radiation source: fine-focus sealed tube2119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 10.0 pixels mm-1θmax = 29.2°, θmin = 4.7°
ω scanh = 3129
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.765, Tmax = 0.876l = 1915
13077 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1186P)2]
where P = (Fo2 + 2Fc2)/3
3348 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 1.68 e Å3
106 restraintsΔρmin = 0.79 e Å3
Crystal data top
[NaZn(C9H3O6)(H2O)4]V = 2756.3 (15) Å3
Mr = 367.54Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.425 (5) ŵ = 1.86 mm1
b = 10.146 (2) ÅT = 293 K
c = 14.427 (3) Å0.23 × 0.22 × 0.20 mm
β = 126.50 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
3348 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2119 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.876Rint = 0.056
13077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065106 restraints
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.68 e Å3
3348 reflectionsΔρmin = 0.79 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.44260 (3)0.47289 (5)0.56752 (5)0.0277 (2)
Na10.29885 (10)0.8061 (2)0.4465 (2)0.0406 (5)
C90.4802 (2)1.2199 (5)0.5988 (4)0.0284 (7)
C80.7090 (3)0.9737 (5)0.8706 (5)0.0331 (7)
C40.5942 (2)1.0936 (5)0.7306 (4)0.0268 (6)
H0080.61911.17270.75650.032*
C60.4854 (3)0.9745 (4)0.6091 (4)0.0264 (6)
H0120.43650.97460.55310.032*
C50.5209 (2)1.0942 (4)0.6463 (4)0.0265 (6)
C30.6303 (3)0.9744 (5)0.7762 (4)0.0280 (6)
C20.5932 (2)0.8565 (5)0.7375 (4)0.0267 (7)
H0170.61730.77730.76870.032*
C70.4788 (2)0.7306 (5)0.6098 (4)0.0289 (6)
C10.5198 (2)0.8558 (5)0.6519 (4)0.0263 (6)
O10.41242 (17)0.7350 (3)0.5455 (3)0.0344 (7)
O1W0.3853 (3)0.4688 (5)0.6293 (5)0.0575 (12)
O2W0.3838 (2)0.4876 (6)0.3961 (4)0.0546 (12)
O4W0.2642 (4)0.7532 (7)0.2655 (5)0.094 (2)
O60.41411 (19)1.2178 (4)0.5267 (4)0.0448 (10)
O3W0.3018 (3)1.0451 (6)0.4118 (6)0.087 (2)
O50.51477 (17)1.3279 (3)0.6362 (3)0.0316 (7)
O20.51282 (16)0.6223 (3)0.6419 (3)0.0292 (6)
O30.73536 (18)0.8792 (4)0.9374 (3)0.0376 (7)
O40.7451 (2)1.0708 (6)0.8821 (6)0.092 (2)
H1WA0.392 (5)0.402 (9)0.679 (8)0.138*
H4WA0.224 (4)0.730 (11)0.207 (3)0.138*
H4WB0.269 (5)0.822 (8)0.221 (4)0.138*
H3WA0.331 (5)1.086 (2)0.475 (5)0.138*
H3WB0.336 (5)1.053 (3)0.394 (10)0.138*
H2WB0.363 (6)0.559 (8)0.345 (8)0.138*
H1WB0.340 (3)0.471 (11)0.579 (8)0.138*
H2WA0.389 (6)0.440 (10)0.347 (8)0.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0207 (3)0.0165 (3)0.0349 (4)0.0010 (2)0.0105 (3)0.0011 (2)
Na10.0259 (10)0.0345 (12)0.0480 (13)0.0002 (9)0.0148 (10)0.0034 (10)
C90.0229 (10)0.0168 (11)0.0363 (11)0.0020 (9)0.0126 (9)0.0020 (9)
C80.0241 (11)0.0219 (11)0.0384 (12)0.0024 (10)0.0104 (10)0.0052 (10)
C40.0220 (9)0.0167 (10)0.0352 (10)0.0018 (9)0.0134 (9)0.0029 (9)
C60.0213 (9)0.0165 (10)0.0352 (10)0.0021 (8)0.0135 (8)0.0016 (9)
C50.0219 (9)0.0162 (10)0.0350 (10)0.0020 (8)0.0135 (8)0.0023 (8)
C30.0220 (9)0.0182 (10)0.0357 (10)0.0022 (8)0.0129 (8)0.0037 (8)
C20.0214 (9)0.0168 (10)0.0355 (10)0.0025 (8)0.0134 (9)0.0028 (9)
C70.0215 (9)0.0174 (9)0.0382 (10)0.0019 (8)0.0126 (8)0.0003 (9)
C10.0211 (9)0.0164 (9)0.0356 (10)0.0022 (8)0.0138 (8)0.0015 (8)
O10.0224 (11)0.0196 (11)0.0428 (13)0.0022 (9)0.0094 (10)0.0011 (10)
O1W0.040 (2)0.069 (3)0.054 (3)0.002 (2)0.023 (2)0.007 (2)
O2W0.045 (2)0.063 (3)0.042 (3)0.005 (2)0.018 (2)0.000 (2)
O4W0.127 (5)0.088 (4)0.063 (4)0.059 (4)0.055 (4)0.023 (3)
O60.0245 (18)0.0215 (19)0.060 (3)0.0045 (15)0.0098 (18)0.0032 (18)
O3W0.054 (3)0.060 (4)0.085 (4)0.004 (2)0.007 (3)0.032 (3)
O50.0242 (11)0.0171 (12)0.0383 (13)0.0013 (10)0.0104 (10)0.0017 (10)
O20.0219 (10)0.0163 (11)0.0388 (12)0.0010 (9)0.0123 (9)0.0004 (10)
O30.0263 (12)0.0251 (12)0.0402 (13)0.0029 (10)0.0084 (10)0.0066 (11)
O40.029 (2)0.058 (3)0.119 (5)0.010 (2)0.006 (3)0.044 (3)
Geometric parameters (Å, º) top
Zn1—O2W1.996 (5)C6—C51.387 (7)
Zn1—O5i2.002 (3)C6—H0120.9300
Zn1—O1W2.006 (5)C3—C21.385 (7)
Zn1—O22.014 (3)C2—C11.400 (6)
Na1—O12.262 (4)C2—H0170.9300
Na1—O4W2.290 (6)C7—O11.251 (6)
Na1—O3ii2.352 (4)C7—O21.271 (6)
Na1—O3iii2.365 (5)C7—C11.486 (7)
Na1—O3W2.486 (5)O1W—H1WA0.93 (5)
Na1—Na1iv3.621 (4)O1W—H1WB0.86 (5)
C9—O61.250 (6)O2W—H2WB0.94 (5)
C9—O51.277 (6)O2W—H2WA0.93 (5)
C9—C51.493 (6)O4W—H4WA0.85 (4)
C8—O31.233 (6)O4W—H4WB1.00 (5)
C8—O41.245 (7)O3W—H3WA0.85 (5)
C8—C31.505 (7)O3W—H3WB0.98 (5)
C4—C51.394 (7)O5—Zn1v2.002 (3)
C4—C31.396 (7)O3—Na1vi2.352 (4)
C4—H0080.9300O3—Na1iii2.365 (5)
C6—C11.374 (6)
O2W—Zn1—O5i115.16 (19)C6—C5—C4118.5 (4)
O2W—Zn1—O1W113.7 (2)C6—C5—C9119.9 (4)
O5i—Zn1—O1W110.88 (18)C4—C5—C9121.6 (4)
O2W—Zn1—O2110.30 (19)C2—C3—C4119.9 (4)
O5i—Zn1—O296.19 (14)C2—C3—C8119.8 (4)
O1W—Zn1—O2109.20 (18)C4—C3—C8120.2 (4)
O1—Na1—O4W97.5 (2)C3—C2—C1120.5 (4)
O1—Na1—O3ii104.33 (15)C3—C2—H017119.8
O4W—Na1—O3ii88.02 (18)C1—C2—H017119.8
O1—Na1—O3iii114.83 (16)O1—C7—O2122.3 (4)
O4W—Na1—O3iii147.3 (2)O1—C7—C1119.2 (4)
O3ii—Na1—O3iii79.70 (15)O2—C7—C1118.5 (4)
O1—Na1—O3W105.94 (18)C6—C1—C2118.4 (4)
O4W—Na1—O3W91.8 (3)C6—C1—C7120.2 (4)
O3ii—Na1—O3W149.48 (19)C2—C1—C7121.4 (4)
O3iii—Na1—O3W84.2 (2)C7—O1—Na1162.9 (3)
O1—Na1—Na1iv115.79 (15)Zn1—O1W—H1WA120 (7)
O4W—Na1—Na1iv121.80 (18)Zn1—O1W—H1WB116 (8)
O3ii—Na1—Na1iv39.98 (10)H1WA—O1W—H1WB104 (7)
O3iii—Na1—Na1iv39.72 (10)Zn1—O2W—H2WB134 (7)
O3W—Na1—Na1iv119.6 (2)Zn1—O2W—H2WA127 (7)
O6—C9—O5121.8 (4)H2WB—O2W—H2WA92 (6)
O6—C9—C5120.3 (4)Na1—O4W—H4WA129 (4)
O5—C9—C5117.9 (4)Na1—O4W—H4WB118 (3)
O3—C8—O4121.8 (5)H4WA—O4W—H4WB92 (5)
O3—C8—C3119.1 (4)Na1—O3W—H3WA111 (3)
O4—C8—C3119.1 (5)Na1—O3W—H3WB105 (2)
C5—C4—C3120.1 (4)H3WA—O3W—H3WB89 (6)
C5—C4—H008119.9C9—O5—Zn1v106.5 (3)
C3—C4—H008119.9C7—O2—Zn1108.7 (3)
C1—C6—C5122.5 (4)C8—O3—Na1vi132.2 (4)
C1—C6—H012118.7C8—O3—Na1iii125.0 (4)
C5—C6—H012118.7Na1vi—O3—Na1iii100.30 (15)
C1—C6—C5—C40.2 (8)O2—C7—C1—C6172.8 (5)
C1—C6—C5—C9178.2 (5)O1—C7—C1—C2170.0 (5)
C3—C4—C5—C60.3 (7)O2—C7—C1—C29.0 (8)
C3—C4—C5—C9177.6 (5)O2—C7—O1—Na1166.7 (9)
O6—C9—C5—C60.8 (8)C1—C7—O1—Na112.3 (16)
O5—C9—C5—C6179.3 (5)O4W—Na1—O1—C7121.7 (13)
O6—C9—C5—C4177.1 (5)O3ii—Na1—O1—C7148.4 (13)
O5—C9—C5—C41.3 (7)O3iii—Na1—O1—C763.3 (13)
C5—C4—C3—C20.1 (8)O3W—Na1—O1—C727.6 (13)
C5—C4—C3—C8177.5 (5)Na1iv—Na1—O1—C7107.5 (13)
O3—C8—C3—C223.6 (8)O6—C9—O5—Zn1v4.6 (6)
O4—C8—C3—C2159.3 (6)C5—C9—O5—Zn1v173.8 (4)
O3—C8—C3—C4154.0 (5)O1—C7—O2—Zn12.3 (6)
O4—C8—C3—C423.1 (9)C1—C7—O2—Zn1178.7 (4)
C4—C3—C2—C10.8 (8)O2W—Zn1—O2—C759.7 (4)
C8—C3—C2—C1178.3 (5)O5i—Zn1—O2—C7179.4 (3)
C5—C6—C1—C21.0 (8)O1W—Zn1—O2—C765.9 (4)
C5—C6—C1—C7179.3 (5)O4—C8—O3—Na1vi82.2 (8)
C3—C2—C1—C61.3 (8)C3—C8—O3—Na1vi100.7 (5)
C3—C2—C1—C7179.5 (5)O4—C8—O3—Na1iii119.5 (6)
O1—C7—C1—C68.2 (8)C3—C8—O3—Na1iii57.5 (6)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y+3/2, z+1; (v) x, y+1, z; (vi) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5vii0.93 (5)2.35 (8)3.090 (6)137 (9)
O2W—H2WA···O2viii0.93 (5)2.28 (9)2.998 (6)133 (9)
O3W—H3WA···O60.85 (5)2.11 (7)2.747 (7)132 (7)
O4W—H4WB···O4ix1.00 (5)1.71 (5)2.686 (8)166 (8)
O4W—H4WA···O3Wx0.85 (4)2.37 (7)2.948 (8)126 (9)
Symmetry codes: (vii) x+1, y1, z+3/2; (viii) x+1, y+1, z+1; (ix) x+1, y+2, z+1; (x) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[NaZn(C9H3O6)(H2O)4]
Mr367.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.425 (5), 10.146 (2), 14.427 (3)
β (°) 126.50 (3)
V3)2756.3 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.765, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
13077, 3348, 2119
Rint0.056
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.187, 0.99
No. of reflections3348
No. of parameters214
No. of restraints106
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.68, 0.79

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.93 (5)2.35 (8)3.090 (6)137 (9)
O2W—H2WA···O2ii0.93 (5)2.28 (9)2.998 (6)133 (9)
O3W—H3WA···O60.85 (5)2.11 (7)2.747 (7)132 (7)
O4W—H4WB···O4iii1.00 (5)1.71 (5)2.686 (8)166 (8)
O4W—H4WA···O3Wiv0.85 (4)2.37 (7)2.948 (8)126 (9)
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank Jilin Agricultural Science and Technology College for support.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChui, S. S. Y., Siu, A. & Williams, I. D. (1999). Acta Cryst. C55, 194–196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMajumder, A., Shit, S., Choudhury, C. R., Batten, S. R., Pilet, G., Daro, N., Sutter, J.-P., Chattopadhyay, N. & Mitra, S. (2005). Inorg. Chim. Acta, 358, 3855–3864.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds