organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(3-chloro­phen­yl)-3,6-dihydr­­oxy-6-methyl-2-(2-pyrid­yl)-4,5,6,7-tetra­hydro­indazole-5-carboxyl­ate

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bInstitute of Structural Biology and Biophysics-2: Molecular Biophysics, Research Centre Jülich, D-52425 Jülich, Germany
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 10 March 2010; accepted 12 March 2010; online 17 March 2010)

In the title compound, C22H22ClN3O4, the cyclo­hexane ring adopts a twisted half-chair conformation. The mol­ecule is stabilized by an intra­molecular O—H⋯N inter­action, generating an S(6) motif. The crystal packing is stabilized by inter­molecular O—H⋯N and C—H⋯O inter­actions.

Related literature

For the synthesis and stereochemistry investigations through NMR of N(2)-pyridyl tetra­hydro­indazoles, see: Amirthaganesan et al. (2008[Amirthaganesan, S., Aridoss, G., Park, Y. H., Kim, J. S., Son, S. M. & Jeong, Y. T. (2008). Heterocycles, 75, 537-554.]). For the biological activity of tetra­hydro­indazoles, see: Connolly et al. (1997[Connolly, P., Wetter, S., Beers, K., Hamel, S., Haynes-Johnson, D., Kiddoe, M., Kraft, P., Lai, M., Campen, C., Palmer, S. & Phillips, A. (1997). Bioorg. Med. Chem. Lett. 7, 2551-2556.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22ClN3O4

  • Mr = 427.88

  • Triclinic, [P \overline 1]

  • a = 8.585 (5) Å

  • b = 9.053 (3) Å

  • c = 14.884 (3) Å

  • α = 94.68 (2)°

  • β = 90.19 (2)°

  • γ = 115.66 (3)°

  • V = 1038.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.958

  • 4446 measured reflections

  • 3647 independent reflections

  • 3025 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.04

  • 3647 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3 0.82 1.90 2.604 (3) 143
O3—H3⋯N1i 0.82 2.10 2.920 (2) 176
C11—H11⋯O3ii 0.93 2.58 3.418 (3) 151
C16—H16C⋯O4iii 0.96 2.57 3.397 (3) 144
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In azole family, tetrahydroindazoles (cycloalkane derivatives of pyrazoles) are having much importance for their effective biological potencies (Connolly et al., 1997). Our current research work is focused on the stereospecific synthesis of 1(H) and various N-substituted tetrahydroindazoles by taking cyclic β keto esters as an effective synthons, and exploring their stereochemistry. Recently, we have described complete structural elucidation and conformation of a series of N(2)-pyridyl tetrahydroindazoles (Amirthaganesan et al., 2008). One and two dimensional NMR investigations strongly proved that all the compounds obtained as a single isomer where cyclohexane ring adopts slightly distorted chair conformation and pyridyl moiety favored at N(2) position in the azole ring. We report here the X-ray crystal structure of the title compound.

The sum of the bond angles at N2 (359.9 (3)°) indicates the sp2 hybridization. Atoms O4 and Cl1 lie in the plane of the rings to which they are attached with the deviation of 0.002 (2) and -0.004 (1) Å, respectively. The pyridine (or pyridyl) ring, attached at N(2) position of the pyrazole ring, is parallel to the pyrazole ring with the dihedral angle of 8.0 (1)°. The dihedral angle between the phenyl ring and the pyridine (or pyridyl) ring is 64.2 (1)°. Torsion angle (3.9 (3)°) around O1—C13—O2—C14 indicates the planarity of the moiety. The cyclohexane ring adopts twisted half-chair conformation in solid state, with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.373 (2) Å, q3 = -0.346 (2) Å; QT = 0.509 (2)Å and θ = 132.8 (2)°.

The molecule is stabilized by strong O—H···N intramolecular interaction, wherein, atom O4 acts as donor to N3 generating S(6) motif. The crystal packing is stabilized by O—H···N and C—H···O intermolecular interactions. Atoms C11 and C16 act as donors to O3 and O4, respectively, each generating chain of C(8), which in turn generates R44(28) graph set along ab plane. Atom O3 acts as donor to N1 at (-x,-y,-z+1) generating a centrosymmetric dimer of R22(12) graph set.

Related literature top

For the synthesis and stereochemistry investigations through NMR of N(2)-pyridyl tetrahydroindazoles, see: Amirthaganesan et al. (2008). For the biological activity of tetrahydroindazoles, see: Connolly et al. (1997). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of r-2,c(4)-bis(ethoxycarbonyl)-c(5)-hydroxy-t(5)-methyl-t(3)- (p-chlorophenyl)cyclohexanone (1 mmol) and 2-hydrazinopyridine (1.2 mmol) in toluene with the addition of catalytic amount of acetic acid were refluxed for about 6 h. After completion of the reaction, the solvent was evaporated under vacuum and the resultant residue was recrystallized from ethanol.

Refinement top

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and d(O—H) = 0.82 Å, Uiso(H) = 1.5Ueq (O) for the OH group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I). For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
Ethyl 4-(3-chlorophenyl)-3,6-dihydroxy-6-methyl-2-(2-pyridyl)-4,5,6,7- tetrahydroindazole-5-carboxylate top
Crystal data top
C22H22ClN3O4Z = 2
Mr = 427.88F(000) = 448
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.585 (5) ÅCell parameters from 1965 reflections
b = 9.053 (3) Åθ = 2.5–25.0°
c = 14.884 (3) ŵ = 0.22 mm1
α = 94.68 (2)°T = 293 K
β = 90.19 (2)°Prism, colourless
γ = 115.66 (3)°0.30 × 0.22 × 0.20 mm
V = 1038.3 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3647 independent reflections
Radiation source: fine-focus sealed tube3025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ω and ϕ scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 110
Tmin = 0.937, Tmax = 0.958k = 1010
4446 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3338P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3647 reflectionsΔρmax = 0.24 e Å3
274 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (15)
Crystal data top
C22H22ClN3O4γ = 115.66 (3)°
Mr = 427.88V = 1038.3 (7) Å3
Triclinic, P1Z = 2
a = 8.585 (5) ÅMo Kα radiation
b = 9.053 (3) ŵ = 0.22 mm1
c = 14.884 (3) ÅT = 293 K
α = 94.68 (2)°0.30 × 0.22 × 0.20 mm
β = 90.19 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3025 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.958Rint = 0.010
4446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
3647 reflectionsΔρmin = 0.30 e Å3
274 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23589 (18)0.01801 (18)0.72716 (10)0.0366 (3)
H10.29780.05110.72200.044*
C20.07219 (19)0.06547 (18)0.66275 (10)0.0375 (3)
C30.12780 (19)0.09587 (18)0.56754 (10)0.0396 (4)
H3A0.16340.18410.56650.048*
H3B0.03040.12970.52480.048*
C40.27363 (19)0.05594 (18)0.54012 (10)0.0361 (3)
C50.38310 (19)0.18470 (18)0.60252 (10)0.0369 (3)
C60.36178 (19)0.19180 (18)0.70250 (10)0.0356 (3)
H60.30880.26660.71800.043*
C70.53145 (18)0.25391 (18)0.75799 (10)0.0351 (3)
C80.5566 (2)0.3545 (2)0.83731 (10)0.0414 (4)
H80.47310.38910.85510.050*
C90.7067 (2)0.4029 (2)0.88964 (10)0.0447 (4)
C100.8331 (2)0.3542 (2)0.86565 (11)0.0469 (4)
H100.93320.38780.90190.056*
C110.8082 (2)0.2543 (2)0.78656 (11)0.0469 (4)
H110.89200.21960.76930.056*
C120.6592 (2)0.2054 (2)0.73290 (11)0.0417 (4)
H120.64450.13930.67940.050*
C130.1873 (2)0.0274 (2)0.82426 (11)0.0427 (4)
C140.1681 (4)0.0911 (3)0.96324 (14)0.0803 (7)
H14A0.15700.19550.98160.096*
H14B0.05560.09030.96720.096*
C150.2938 (3)0.0447 (3)1.02645 (15)0.0851 (7)
H15A0.40600.04621.02190.128*
H15B0.25680.02761.08710.128*
H15C0.29970.14791.01110.128*
C160.0561 (2)0.2271 (2)0.69547 (12)0.0507 (4)
H16A0.09700.20580.75280.076*
H16B0.00020.29760.70180.076*
H16C0.15210.27990.65250.076*
C170.5006 (2)0.29568 (19)0.55071 (10)0.0413 (4)
C180.5488 (2)0.30146 (19)0.38582 (11)0.0402 (4)
C190.4867 (2)0.2333 (2)0.29936 (11)0.0466 (4)
H190.38200.14010.28870.056*
C200.5862 (3)0.3088 (2)0.22937 (12)0.0575 (5)
H200.54900.26630.17010.069*
C210.7400 (3)0.4464 (3)0.24685 (13)0.0605 (5)
H210.80840.49750.20000.073*
C220.7904 (2)0.5064 (2)0.33443 (13)0.0584 (5)
H220.89390.60060.34620.070*
N10.31575 (16)0.08157 (15)0.45512 (8)0.0394 (3)
N20.45910 (16)0.23300 (15)0.46190 (8)0.0408 (3)
N30.69768 (19)0.43596 (18)0.40430 (10)0.0510 (4)
O10.12768 (17)0.11693 (18)0.85661 (8)0.0608 (4)
O20.21903 (18)0.07785 (16)0.87015 (8)0.0602 (3)
O30.00213 (13)0.04846 (13)0.66127 (7)0.0443 (3)
H30.08840.00920.62720.066*
O40.63299 (16)0.44010 (14)0.57502 (8)0.0589 (3)
H40.68220.48100.53000.088*
Cl10.73648 (7)0.52862 (8)0.98989 (3)0.0772 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (7)0.0407 (8)0.0381 (8)0.0167 (7)0.0041 (6)0.0003 (6)
C20.0317 (7)0.0382 (8)0.0398 (8)0.0136 (6)0.0052 (6)0.0027 (6)
C30.0354 (8)0.0369 (8)0.0406 (8)0.0118 (7)0.0072 (6)0.0052 (6)
C40.0328 (7)0.0377 (8)0.0358 (8)0.0147 (6)0.0055 (6)0.0031 (6)
C50.0352 (8)0.0366 (8)0.0348 (8)0.0128 (6)0.0085 (6)0.0031 (6)
C60.0326 (7)0.0380 (8)0.0347 (8)0.0153 (6)0.0073 (6)0.0039 (6)
C70.0314 (7)0.0369 (8)0.0327 (7)0.0113 (6)0.0038 (6)0.0006 (6)
C80.0338 (8)0.0494 (9)0.0390 (8)0.0178 (7)0.0043 (6)0.0045 (7)
C90.0370 (8)0.0543 (10)0.0334 (8)0.0126 (7)0.0061 (6)0.0048 (7)
C100.0304 (8)0.0625 (11)0.0408 (9)0.0138 (8)0.0064 (6)0.0052 (8)
C110.0347 (8)0.0575 (10)0.0494 (10)0.0211 (8)0.0011 (7)0.0042 (8)
C120.0388 (8)0.0449 (9)0.0388 (8)0.0171 (7)0.0017 (6)0.0036 (7)
C130.0309 (8)0.0504 (9)0.0407 (9)0.0125 (7)0.0048 (6)0.0017 (7)
C140.1040 (18)0.0827 (15)0.0467 (11)0.0304 (14)0.0103 (11)0.0233 (11)
C150.0936 (17)0.114 (2)0.0490 (12)0.0472 (16)0.0075 (11)0.0030 (12)
C160.0395 (9)0.0468 (9)0.0552 (10)0.0094 (8)0.0018 (8)0.0015 (8)
C170.0393 (8)0.0374 (8)0.0394 (8)0.0106 (7)0.0094 (7)0.0029 (6)
C180.0387 (8)0.0418 (8)0.0432 (9)0.0201 (7)0.0002 (7)0.0050 (7)
C190.0447 (9)0.0489 (9)0.0447 (9)0.0197 (8)0.0006 (7)0.0004 (7)
C200.0642 (12)0.0695 (12)0.0421 (10)0.0326 (10)0.0043 (8)0.0030 (9)
C210.0576 (11)0.0710 (13)0.0536 (11)0.0264 (10)0.0143 (9)0.0183 (10)
C220.0458 (10)0.0565 (11)0.0648 (12)0.0127 (9)0.0058 (9)0.0166 (9)
N10.0339 (7)0.0389 (7)0.0380 (7)0.0102 (6)0.0048 (5)0.0038 (5)
N20.0373 (7)0.0400 (7)0.0364 (7)0.0093 (6)0.0040 (5)0.0005 (5)
N30.0447 (8)0.0494 (8)0.0506 (8)0.0123 (7)0.0010 (6)0.0075 (7)
O10.0593 (8)0.0877 (10)0.0464 (7)0.0437 (8)0.0021 (6)0.0024 (6)
O20.0762 (9)0.0632 (8)0.0440 (7)0.0315 (7)0.0015 (6)0.0137 (6)
O30.0353 (6)0.0488 (6)0.0494 (6)0.0210 (5)0.0127 (5)0.0083 (5)
O40.0561 (7)0.0446 (7)0.0471 (7)0.0039 (6)0.0076 (6)0.0020 (5)
Cl10.0581 (3)0.1098 (5)0.0520 (3)0.0334 (3)0.0211 (2)0.0374 (3)
Geometric parameters (Å, º) top
C1—C131.512 (2)C13—O21.333 (2)
C1—C61.550 (2)C14—O21.453 (2)
C1—C21.555 (2)C14—C151.489 (3)
C1—H10.9800C14—H14A0.9700
C2—O31.4300 (19)C14—H14B0.9700
C2—C161.521 (2)C15—H15A0.9600
C2—C31.538 (2)C15—H15B0.9600
C3—C41.492 (2)C15—H15C0.9600
C3—H3A0.9700C16—H16A0.9600
C3—H3B0.9700C16—H16B0.9600
C4—N11.328 (2)C16—H16C0.9600
C4—C51.405 (2)C17—O41.3287 (19)
C5—C171.369 (2)C17—N21.377 (2)
C5—C61.500 (2)C18—N31.337 (2)
C6—C71.525 (2)C18—C191.379 (2)
C6—H60.9800C18—N21.402 (2)
C7—C81.387 (2)C19—C201.378 (3)
C7—C121.389 (2)C19—H190.9300
C8—C91.381 (2)C20—C211.372 (3)
C8—H80.9300C20—H200.9300
C9—C101.375 (2)C21—C221.363 (3)
C9—Cl11.7482 (17)C21—H210.9300
C10—C111.381 (2)C22—N31.340 (2)
C10—H100.9300C22—H220.9300
C11—C121.384 (2)N1—N21.3854 (19)
C11—H110.9300O3—H30.8200
C12—H120.9300O4—H40.8200
C13—O11.204 (2)
C13—C1—C6109.76 (12)O1—C13—O2123.97 (16)
C13—C1—C2111.12 (12)O1—C13—C1125.16 (15)
C6—C1—C2113.02 (12)O2—C13—C1110.87 (14)
C13—C1—H1107.6O2—C14—C15112.8 (2)
C6—C1—H1107.6O2—C14—H14A109.0
C2—C1—H1107.6C15—C14—H14A109.0
O3—C2—C16110.78 (13)O2—C14—H14B109.0
O3—C2—C3109.40 (13)C15—C14—H14B109.0
C16—C2—C3110.15 (13)H14A—C14—H14B107.8
O3—C2—C1106.58 (12)C14—C15—H15A109.5
C16—C2—C1111.06 (13)C14—C15—H15B109.5
C3—C2—C1108.78 (12)H15A—C15—H15B109.5
C4—C3—C2110.91 (12)C14—C15—H15C109.5
C4—C3—H3A109.5H15A—C15—H15C109.5
C2—C3—H3A109.5H15B—C15—H15C109.5
C4—C3—H3B109.5C2—C16—H16A109.5
C2—C3—H3B109.5C2—C16—H16B109.5
H3A—C3—H3B108.0H16A—C16—H16B109.5
N1—C4—C5113.24 (14)C2—C16—H16C109.5
N1—C4—C3123.79 (13)H16A—C16—H16C109.5
C5—C4—C3122.95 (14)H16B—C16—H16C109.5
C17—C5—C4104.49 (13)O4—C17—C5130.01 (14)
C17—C5—C6130.71 (13)O4—C17—N2122.42 (15)
C4—C5—C6124.75 (14)C5—C17—N2107.56 (13)
C5—C6—C7113.80 (13)N3—C18—C19123.45 (16)
C5—C6—C1108.64 (12)N3—C18—N2114.62 (14)
C7—C6—C1110.03 (12)C19—C18—N2121.93 (15)
C5—C6—H6108.1C20—C19—C18117.28 (17)
C7—C6—H6108.1C20—C19—H19121.4
C1—C6—H6108.1C18—C19—H19121.4
C8—C7—C12118.85 (14)C21—C20—C19120.22 (18)
C8—C7—C6119.86 (13)C21—C20—H20119.9
C12—C7—C6121.22 (13)C19—C20—H20119.9
C9—C8—C7119.45 (15)C22—C21—C20118.54 (18)
C9—C8—H8120.3C22—C21—H21120.7
C7—C8—H8120.3C20—C21—H21120.7
C10—C9—C8122.03 (15)N3—C22—C21122.97 (18)
C10—C9—Cl1118.91 (12)N3—C22—H22118.5
C8—C9—Cl1119.06 (13)C21—C22—H22118.5
C9—C10—C11118.52 (15)C4—N1—N2103.89 (12)
C9—C10—H10120.7C17—N2—N1110.81 (13)
C11—C10—H10120.7C17—N2—C18127.39 (13)
C10—C11—C12120.31 (15)N1—N2—C18121.72 (13)
C10—C11—H11119.8C18—N3—C22117.54 (16)
C12—C11—H11119.8C13—O2—C14117.31 (16)
C11—C12—C7120.83 (15)C2—O3—H3109.5
C11—C12—H12119.6C17—O4—H4109.5
C7—C12—H12119.6
C13—C1—C2—O370.80 (16)C10—C11—C12—C70.9 (3)
C6—C1—C2—O353.11 (16)C8—C7—C12—C111.0 (2)
C13—C1—C2—C1649.95 (17)C6—C7—C12—C11176.00 (15)
C6—C1—C2—C16173.86 (13)C6—C1—C13—O154.3 (2)
C13—C1—C2—C3171.33 (13)C2—C1—C13—O171.5 (2)
C6—C1—C2—C364.75 (16)C6—C1—C13—O2125.83 (14)
O3—C2—C3—C466.92 (16)C2—C1—C13—O2108.41 (15)
C16—C2—C3—C4171.08 (13)C4—C5—C17—O4179.84 (17)
C1—C2—C3—C449.14 (17)C6—C5—C17—O42.2 (3)
C2—C3—C4—N1160.33 (14)C4—C5—C17—N20.32 (17)
C2—C3—C4—C521.3 (2)C6—C5—C17—N2177.30 (15)
N1—C4—C5—C170.35 (18)N3—C18—C19—C200.6 (3)
C3—C4—C5—C17178.15 (14)N2—C18—C19—C20179.03 (15)
N1—C4—C5—C6177.45 (14)C18—C19—C20—C210.2 (3)
C3—C4—C5—C64.0 (2)C19—C20—C21—C220.5 (3)
C17—C5—C6—C744.3 (2)C20—C21—C22—N30.9 (3)
C4—C5—C6—C7138.48 (15)C5—C4—N1—N20.23 (17)
C17—C5—C6—C1167.28 (16)C3—C4—N1—N2178.26 (13)
C4—C5—C6—C115.5 (2)O4—C17—N2—N1179.77 (14)
C13—C1—C6—C5170.09 (12)C5—C17—N2—N10.21 (18)
C2—C1—C6—C545.43 (16)O4—C17—N2—C183.5 (3)
C13—C1—C6—C764.71 (16)C5—C17—N2—C18176.92 (14)
C2—C1—C6—C7170.63 (12)C4—N1—N2—C170.01 (16)
C5—C6—C7—C8142.41 (15)C4—N1—N2—C18176.92 (13)
C1—C6—C7—C895.41 (17)N3—C18—N2—C175.5 (2)
C5—C6—C7—C1240.7 (2)C19—C18—N2—C17174.84 (15)
C1—C6—C7—C1281.54 (17)N3—C18—N2—N1170.91 (13)
C12—C7—C8—C90.5 (2)C19—C18—N2—N18.8 (2)
C6—C7—C8—C9176.50 (15)C19—C18—N3—C220.3 (3)
C7—C8—C9—C100.1 (3)N2—C18—N3—C22179.38 (15)
C7—C8—C9—Cl1179.58 (12)C21—C22—N3—C180.5 (3)
C8—C9—C10—C110.2 (3)O1—C13—O2—C143.9 (3)
Cl1—C9—C10—C11179.72 (13)C1—C13—O2—C14175.97 (16)
C9—C10—C11—C120.3 (3)C15—C14—O2—C1379.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.821.902.604 (3)143
O3—H3···N1i0.822.102.920 (2)176
C11—H11···O3ii0.932.583.418 (3)151
C16—H16C···O4iii0.962.573.397 (3)144
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC22H22ClN3O4
Mr427.88
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.585 (5), 9.053 (3), 14.884 (3)
α, β, γ (°)94.68 (2), 90.19 (2), 115.66 (3)
V3)1038.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.937, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
4446, 3647, 3025
Rint0.010
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.04
No. of reflections3647
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.821.902.604 (3)143.4
O3—H3···N1i0.822.102.920 (2)176
C11—H11···O3ii0.932.583.418 (3)150.7
C16—H16C···O4iii0.962.573.397 (3)144
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y1, z.
 

Acknowledgements

This study was supported financially by Pukyong National University under the 2009 Post-Doc Program.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmirthaganesan, S., Aridoss, G., Park, Y. H., Kim, J. S., Son, S. M. & Jeong, Y. T. (2008). Heterocycles, 75, 537–554.  CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnolly, P., Wetter, S., Beers, K., Hamel, S., Haynes-Johnson, D., Kiddoe, M., Kraft, P., Lai, M., Campen, C., Palmer, S. & Phillips, A. (1997). Bioorg. Med. Chem. Lett. 7, 2551–2556.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds