metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m403-m404

Poly[aqua­hexa­benzimidazole­octa-μ-cyanido-octa­cyanidotricopper(II)ditungstate(V)]

aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

(Received 5 February 2010; accepted 4 March 2010; online 13 March 2010)

In the polymeric title compound, [Cu3W2(CN)16(C7H6N2)6(H2O)]n, the coordination geometry of the W(V) atom is eight-coordinate dodeca­hedral, where four CN groups of [W(CN)8] are bridged to CuII ions, and the other four CN groups are not bridged. The coordination geometries of the CuII ions are five-coordinate pseudo-square-based pyramidal. There are two distinct Cu sites, which build and link the cyanido-bridged Cu—W ladder chains. Successive connections lead to the formation of a two-dimensional network. The H atoms of a coordinated water molecule and the imino groups form hydrogen bonds to the N atoms of non-bridged CN groups.

Related literature

For general background to mol­ecule-based magnets, see: Catala et al. (2005[Catala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746-748.]); Garde et al. (1999[Garde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587-595.]); Herrera et al. (2004[Herrera, J. M., Marvaud, V., Verdaguer, M., Marrot, J., Kalisz, M. & Mathonière, C. (2004). Angew. Chem. Int. Ed. 43, 5468-5471.], 2008[Herrera, J. M., Franz, P., Podgajny, R., Pilkington, M., Biner, M., Decurtins, S., Stoeckli-Evans, H., Neels, A., Garde, R., Dromzée, Y., Julve, M., Sieklucka, B., Hashimoto, K., Ohkoshi, S. & Verdaguer, M. (2008). C. R. Chim. 11, 1192-1199.]); Kosaka et al. (2009[Kosaka, W., Imoto, K., Tsunobuchi, Y. & Ohkoshi, S. (2009). Inorg. Chem. 48, 4604-4606.]); Leipoldt et al. (1994[Leipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241-322.]); Ohkoshi et al. (2006[Ohkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. (2006). J. Am. Chem. Soc. 128, 5320-5321.], 2007[Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084-3085.], 2008[Ohkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048-3054.]); Sieklucka et al. (2009[Sieklucka, B., Podgajny, R., Pinkowicz, D., Nowicka, B., Korzeniak, T., Bałanda, M., Wasiutyński, T., Pełka, R., Makarewicz, M., Czapa, M., Rams, M., Gaweł, B. & Łasocha, W. (2009). CrystEngComm, 11, 2032-2039.]); Zhong et al. (2000[Zhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095-5101.]). For related structures, see: Ohkoshi et al. (2003[Ohkoshi, S., Arimoto, Y., Hozumi, T., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). Chem. Commun. pp. 2772-2773.]); Podgajny et al. (2002[Podgajny, R., Korzeniak, T., Bałanda, M., Wasiutyński, T., Errington, W., Kemp, J. T., Alcock, W. N. & Sieklucka, B. (2002). Chem. Commun. pp. 1138-1139.]); Kaneko et al. (2007[Kaneko, S., Tsunobuchi, Y., Sakurai, S. & Ohkoshi, S. (2007). Chem. Phys. Lett. 446, 292-296.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3W2(CN)16(C7H6N2)6(H2O)]

  • Mr = 1701.46

  • Monoclinic, C 2/c

  • a = 32.0103 (8) Å

  • b = 10.2389 (3) Å

  • c = 19.5533 (5) Å

  • β = 93.8269 (8)°

  • V = 6394.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.63 mm−1

  • T = 296 K

  • 0.45 × 0.12 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.327, Tmax = 0.690

  • 31073 measured reflections

  • 7321 independent reflections

  • 6376 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.02

  • 7321 reflections

  • 421 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.85 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N6 1.05 (12) 2.20 (12) 3.178 (7) 154 (10)
N10—H10N⋯N5i 0.86 1.97 2.802 (5) 163
N12—H12N⋯N8ii 0.86 2.04 2.888 (5) 169
N14—H14N⋯N7iii 0.86 2.18 2.973 (5) 154
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and VESTA (Momma & Izumi, 2006[Momma, K. & Izumi, F. (2006). IUCr Commission on Crystallographic Computing Newsletter, 130, 106-119.]); software used to prepare material for publication: CrystalStructure .

Supporting information


Comment top

In molecule-based magnets, preparing compounds with a high Curie temperature (TC) is a challenging issue. From this view point, octacyanometalate [M(CN)8] (M = Mo, W, Nb)-based magnets have been aggressively studied due to their high TC (Garde et al., 1999; Zhong et al., 2000; Herrera et al., 2008; Sieklucka et al., 2009; Kosaka et al., 2009) and properties such as photomagnetism (Herrera et al., 2004; Catala et al., 2005; Ohkoshi et al., 2006; Ohkoshi et al., 2008) and chemically sensitive magnetism (Ohkoshi et al., 2007). Octacyanometalates, [M(CN)8] (M = Mo, W, Nb), a versatile class of building blocks, can adopt different spatial configurations depending on their chemical environment, e.g., square antiprism (D4d), dodecahedron (D2d), and bicapped trigonal prism (C2v) (Leipoldt et al., 1994). Thus, crystal structures of their complexes have various coordination geometries. Several octacyanometalate-based magnets of Cu—W systems such as {[Cu3[W(CN)8]2]3.4H2O}n (3-dimensional network complex, 3-D) (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]8H2O}n (3-D) (Ohkoshi et al., 2007), {[(tetrenH5)0.8Cu4 [W(CN)8]4]7.2H2O}n (2-D) (Sieklucka et al., 2009), {[Cu3[W(CN)8]2(3-cyanopyridine)6]4H2O}n (2-D), and {[Cu3[W(CN)8]2(4-cyanopyridine)6]8H2O}n (2-D) (Ohkoshi et al., 2003), have been reported.

The asymmetric unit of the present compound consists of a [W(CN)8]3- anion, a [Cu1(benzimidazole)2]2+ cation and one-half of [Cu2(benzimidazole)(H2O)]2+ cation (Fig. 1). The coordination geometry of W is an 8-coordinated dodecahedron, where four CN groups of [W(CN)8] are bridged to Cu ions (three Cu1 and one Cu2), and other four CN groups are not bridged. The coordination geometries of the two types of CuII ions (Cu1 and Cu2) are 5-coordinated pseudo-square pyramidal. The Cu1 atom is coordinated to three nitrogen atoms of CN groups and two nitrogen atoms of benzimidazole molecules. The Cu2 atom is coordinated to two nitrogen atoms of CN groups, two nitrogen atoms of benzimidazole molecules, and an oxygen atom of an H2O molecule. The cyano-bridged-Cu1—W ladder chains are linked by Cu2 pillar units (Fig. 2). The benzimidazole molecules coordinated to Cu1 are aligned alternately between the layers with the intermolecular shortest distance of 3.452 (7) Å.

The field-cooled magnetization (FCM) curve at 10 Oe showed that the magnetization value gradually increased below 10 K and then drastically dropped below 7.5 K with decreasing temperature. The magnetization vs. external magnetic field (M-H) curve at 2 K showed a spin-flip transition with the critical magnetic field of 900 Oe and the saturation magnetization (Ms) value of 5.2 µB. This Ms value is close to the expected value of 5.0 µB for the ferromagnetic ordering of WV (S = 1/2) ions and CuII (S = 1/2) ions. These FCM and M-H curves indicate that this compound is a metamagnet.

Related literature top

For general background to molecule-based magnets, see: Catala et al. (2005); Garde et al. (1999); Herrera et al. (2004, 2008); Kosaka et al. (2009); Leipoldt et al. (1994); Ohkoshi et al. (2006, 2007, 2008); Sieklucka et al. (2009); Zhong et al. (2000). For related structures, see: Ohkoshi et al. (2003); Podgajny et al. (2002); Kaneko et al. (2007).

Experimental top

The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl22H2O (1.8 × 10 -2 mol dm-3) and benzimidazole (2.0 × 10 -2 mol dm-3) at room temperature. The prepared compound was a deep blue rod-shaped crystal. Elemental analyses: calculated for Cu3[W(CN)8]2(benzimidazole)6(H2O), Calculated: Cu, 11.20; W, 21.61; C, 40.94; H, 2.25; N, 23.05. Found: Cu, 11.32; W, 21.78; C, 40.65; H, 2.42; N, 23.15.

In the Infrared (IR) spectra, cyano stretching peaks were observed at 2206, 2201, 2186, 2183, and 2165 cm-1.

Refinement top

The H atoms of the benzimidazole molecules were placed in calculated positions, with C—H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The maximum and minimum residual electron density peaks were located 0.83 and 0.93 Å, respectively from the W1 atom. A plausible water hydrogen was found in a difference map, and was refined freely. The second water hydrogen is a symmetry equivalent of the first, because the water oxygen O1 lies on the crystallographic 2-fold.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and VESTA (Momma & Izumi, 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plots (50% probability level) of Cu3[W(CN)8]2(C7H6N2)6(H2O). Magenta, Green, gray, light blue, red, and white circle represent W, Cu, C, N, O, and H atoms, respectively. The asterisks indicate the atoms generated by symmetry operations.
[Figure 2] Fig. 2. A structure diagram of Cu3[W(CN)8]2(C7H6N2)6(H2O). Magenta, Green, gray, light blue, and red represent W, Cu, C, N, and O atoms, respectively. Hydrogen atoms are omitted for clarity.
Poly[aquahexabenzimidazoleocta-µ-cyanido- octacyanidotricopper(II)ditungstate(V)] top
Crystal data top
[Cu3W2(CN)16(C7H6N2)6(H2O)]F(000) = 3300.00
Mr = 1701.46Dx = 1.767 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 24759 reflections
a = 32.0103 (8) Åθ = 3.0–27.5°
b = 10.2389 (3) ŵ = 4.63 mm1
c = 19.5533 (5) ÅT = 296 K
β = 93.8269 (8)°Stick, blue
V = 6394.3 (3) Å30.45 × 0.12 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6376 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.059
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3941
Tmin = 0.327, Tmax = 0.690k = 1313
31073 measured reflectionsl = 2524
7321 independent reflections
Refinement top
Refinement on F20 restraints
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.043P)2 + 13.526P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
7321 reflectionsΔρmax = 1.85 e Å3
421 parametersΔρmin = 1.08 e Å3
Crystal data top
[Cu3W2(CN)16(C7H6N2)6(H2O)]V = 6394.3 (3) Å3
Mr = 1701.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 32.0103 (8) ŵ = 4.63 mm1
b = 10.2389 (3) ÅT = 296 K
c = 19.5533 (5) Å0.45 × 0.12 × 0.08 mm
β = 93.8269 (8)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7321 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6376 reflections with F2 > 2σ(F2)
Tmin = 0.327, Tmax = 0.690Rint = 0.059
31073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.043P)2 + 13.526P]
where P = (Fo2 + 2Fc2)/3
7321 reflectionsΔρmax = 1.85 e Å3
421 parametersΔρmin = 1.08 e Å3
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W(1)0.145909 (4)0.677683 (13)0.197487 (7)0.01965 (5)
Cu(2)0.00000.49203 (8)0.25000.03412 (16)
Cu(1)0.188606 (15)1.17685 (4)0.21356 (2)0.02394 (11)
O(1)0.00000.7293 (9)0.25000.122 (3)
N(2)0.05975 (11)0.5193 (3)0.23372 (18)0.0370 (8)
N(1)0.17619 (12)0.9853 (3)0.21299 (18)0.0346 (7)
N(3)0.17679 (12)0.3708 (3)0.21001 (18)0.0342 (7)
N(4)0.24430 (12)0.6811 (3)0.26064 (19)0.0339 (8)
N(5)0.10782 (14)0.5221 (4)0.0592 (2)0.0526 (11)
N(6)0.06447 (17)0.8632 (4)0.1550 (3)0.0742 (16)
N(7)0.13445 (14)0.7107 (5)0.36327 (19)0.0533 (11)
N(8)0.19927 (14)0.7590 (4)0.06671 (18)0.0495 (10)
N(9)0.01423 (12)0.4524 (4)0.34652 (19)0.0422 (9)
N(10)0.04890 (15)0.4583 (5)0.4471 (2)0.0610 (12)
N(11)0.17406 (12)1.1776 (3)0.31062 (18)0.0334 (8)
N(12)0.17738 (19)1.1969 (4)0.4229 (2)0.0611 (13)
N(13)0.18846 (12)1.1756 (3)0.11163 (18)0.0306 (7)
N(14)0.16506 (13)1.2126 (4)0.00448 (19)0.0410 (8)
C(2)0.09067 (13)0.5704 (4)0.22258 (19)0.0295 (8)
C(1)0.16532 (12)0.8801 (3)0.21138 (19)0.0276 (8)
C(3)0.16736 (12)0.4779 (3)0.20814 (18)0.0253 (7)
C(4)0.21022 (13)0.6805 (3)0.2396 (2)0.0276 (8)
C(5)0.12014 (14)0.5790 (4)0.1062 (2)0.0339 (9)
C(6)0.09391 (15)0.8020 (4)0.1676 (2)0.0399 (10)
C(7)0.13846 (14)0.7019 (4)0.3060 (2)0.0334 (9)
C(8)0.18115 (14)0.7292 (4)0.11189 (19)0.0329 (8)
C(9)0.04547 (15)0.5048 (5)0.3837 (2)0.0499 (12)
C(10)0.00421 (16)0.3619 (5)0.3883 (2)0.0478 (11)
C(11)0.03601 (18)0.2733 (6)0.3741 (3)0.0692 (16)
C(12)0.0462 (2)0.1936 (7)0.4281 (5)0.097 (2)
C(13)0.0237 (3)0.2026 (9)0.4940 (5)0.111 (3)
C(14)0.0073 (3)0.2874 (8)0.5065 (3)0.086 (2)
C(15)0.01723 (19)0.3657 (6)0.4523 (2)0.0585 (14)
C(16)0.19871 (18)1.2102 (5)0.3653 (2)0.0452 (11)
C(17)0.13574 (16)1.1428 (4)0.3341 (2)0.0422 (10)
C(18)0.09927 (18)1.1010 (6)0.2988 (3)0.0673 (16)
C(19)0.0650 (2)1.0730 (8)0.3375 (6)0.111 (3)
C(20)0.0680 (3)1.0858 (9)0.4067 (6)0.117 (3)
C(21)0.1033 (3)1.1243 (8)0.4433 (4)0.104 (3)
C(22)0.1385 (2)1.1537 (5)0.4053 (3)0.0569 (14)
C(23)0.15930 (14)1.2307 (4)0.0704 (2)0.0365 (9)
C(24)0.21615 (14)1.1184 (4)0.0683 (2)0.0328 (8)
C(25)0.25409 (15)1.0524 (4)0.0820 (2)0.0426 (10)
C(26)0.27512 (18)1.0159 (5)0.0266 (3)0.0545 (13)
C(27)0.2601 (2)1.0414 (5)0.0407 (2)0.0577 (14)
C(28)0.2242 (2)1.1052 (5)0.0553 (2)0.0526 (13)
C(29)0.20135 (17)1.1435 (4)0.0004 (2)0.0394 (10)
H(1)0.025 (3)0.784 (12)0.233 (6)0.20 (5)*
H(9)0.06330.56770.36740.060*
H(10N)0.06720.48090.47910.073*
H(11)0.04990.26710.33090.083*
H(12)0.06790.13360.42150.116*
H(12N)0.18731.21360.46390.073*
H(13)0.03110.14750.52910.133*
H(14)0.02150.29370.54940.103*
H(14N)0.14891.23950.02950.049*
H(16)0.22641.23780.36430.054*
H(18)0.09751.09180.25140.081*
H(19)0.03991.04540.31550.133*
H(20)0.04451.06710.43040.140*
H(21)0.10451.13120.49080.124*
H(23)0.13691.27750.08600.044*
H(25)0.26441.03430.12650.051*
H(26)0.30050.97220.03410.065*
H(27)0.27561.01320.07650.069*
H(28)0.21471.12340.10020.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W(1)0.02408 (10)0.01523 (9)0.01913 (9)0.00006 (5)0.00245 (6)0.00061 (5)
Cu(2)0.0216 (3)0.0477 (4)0.0322 (3)0.00000.0040 (2)0.0000
Cu(1)0.0300 (2)0.0160 (2)0.0255 (2)0.00025 (17)0.0012 (2)0.00081 (16)
O(1)0.105 (6)0.069 (5)0.200 (10)0.00000.080 (6)0.0000
N(2)0.0287 (18)0.044 (2)0.0377 (19)0.0043 (15)0.0018 (15)0.0010 (15)
N(1)0.048 (2)0.0204 (17)0.0353 (18)0.0029 (15)0.0027 (16)0.0029 (13)
N(3)0.045 (2)0.0225 (18)0.0347 (18)0.0024 (15)0.0027 (15)0.0004 (14)
N(4)0.0310 (19)0.033 (2)0.037 (2)0.0025 (13)0.0035 (16)0.0025 (13)
N(5)0.070 (2)0.050 (2)0.035 (2)0.006 (2)0.017 (2)0.0103 (18)
N(6)0.068 (3)0.042 (2)0.107 (4)0.020 (2)0.031 (3)0.001 (2)
N(7)0.055 (2)0.079 (3)0.0264 (19)0.017 (2)0.0053 (18)0.0072 (18)
N(8)0.069 (2)0.052 (2)0.0286 (18)0.014 (2)0.0124 (19)0.0029 (17)
N(9)0.0318 (19)0.058 (2)0.0361 (19)0.0047 (17)0.0057 (16)0.0074 (17)
N(10)0.058 (2)0.083 (3)0.040 (2)0.004 (2)0.015 (2)0.004 (2)
N(11)0.042 (2)0.0267 (18)0.0315 (18)0.0020 (14)0.0016 (16)0.0003 (12)
N(12)0.097 (4)0.059 (3)0.028 (2)0.015 (2)0.009 (2)0.0020 (18)
N(13)0.0363 (19)0.0273 (18)0.0283 (17)0.0036 (13)0.0021 (15)0.0009 (12)
N(14)0.046 (2)0.046 (2)0.0304 (18)0.0035 (18)0.0019 (16)0.0012 (16)
C(2)0.030 (2)0.032 (2)0.0264 (18)0.0022 (16)0.0030 (16)0.0040 (15)
C(1)0.034 (2)0.0203 (19)0.0285 (18)0.0010 (15)0.0013 (16)0.0035 (14)
C(3)0.0311 (19)0.0179 (18)0.0262 (17)0.0002 (14)0.0043 (15)0.0004 (13)
C(4)0.032 (2)0.023 (2)0.0271 (19)0.0037 (14)0.0003 (17)0.0012 (14)
C(5)0.041 (2)0.030 (2)0.030 (2)0.0001 (17)0.0059 (18)0.0013 (16)
C(6)0.036 (2)0.028 (2)0.054 (2)0.0076 (17)0.010 (2)0.0015 (18)
C(7)0.030 (2)0.038 (2)0.033 (2)0.0081 (17)0.0011 (17)0.0037 (17)
C(8)0.042 (2)0.033 (2)0.0233 (18)0.0021 (18)0.0009 (17)0.0063 (16)
C(9)0.037 (2)0.073 (3)0.038 (2)0.007 (2)0.010 (2)0.000 (2)
C(10)0.039 (2)0.054 (3)0.051 (2)0.009 (2)0.007 (2)0.013 (2)
C(11)0.046 (3)0.060 (3)0.102 (4)0.002 (2)0.009 (3)0.013 (3)
C(12)0.075 (5)0.057 (4)0.163 (9)0.003 (3)0.038 (5)0.037 (4)
C(13)0.132 (8)0.083 (6)0.123 (7)0.032 (5)0.053 (6)0.063 (5)
C(14)0.112 (6)0.084 (5)0.065 (4)0.031 (4)0.033 (4)0.035 (3)
C(15)0.062 (3)0.067 (3)0.047 (2)0.024 (3)0.006 (2)0.011 (2)
C(16)0.059 (3)0.044 (2)0.032 (2)0.003 (2)0.002 (2)0.0059 (19)
C(17)0.051 (2)0.026 (2)0.052 (2)0.0041 (19)0.015 (2)0.0012 (19)
C(18)0.050 (3)0.056 (3)0.096 (4)0.002 (2)0.014 (3)0.016 (3)
C(19)0.058 (4)0.086 (6)0.197 (10)0.015 (3)0.059 (5)0.046 (6)
C(20)0.099 (6)0.081 (6)0.181 (10)0.019 (5)0.093 (7)0.022 (6)
C(21)0.163 (9)0.063 (4)0.096 (5)0.017 (5)0.086 (6)0.011 (4)
C(22)0.076 (4)0.042 (3)0.056 (3)0.005 (2)0.031 (3)0.003 (2)
C(23)0.043 (2)0.035 (2)0.031 (2)0.0034 (19)0.0008 (18)0.0015 (17)
C(24)0.043 (2)0.021 (2)0.034 (2)0.0031 (17)0.0031 (18)0.0004 (15)
C(25)0.049 (2)0.032 (2)0.046 (2)0.005 (2)0.003 (2)0.0017 (19)
C(26)0.058 (3)0.036 (2)0.071 (3)0.010 (2)0.019 (2)0.005 (2)
C(27)0.081 (4)0.042 (3)0.055 (3)0.000 (2)0.032 (2)0.009 (2)
C(28)0.084 (4)0.039 (2)0.036 (2)0.002 (2)0.015 (2)0.004 (2)
C(29)0.060 (3)0.027 (2)0.032 (2)0.004 (2)0.003 (2)0.0008 (16)
Geometric parameters (Å, º) top
W(1)—C(2)2.165 (4)C(10)—C(15)1.388 (7)
W(1)—C(1)2.176 (3)C(11)—C(12)1.390 (12)
W(1)—C(3)2.163 (3)C(12)—C(13)1.436 (14)
W(1)—C(4)2.166 (4)C(13)—C(14)1.329 (13)
W(1)—C(5)2.166 (3)C(14)—C(15)1.383 (10)
W(1)—C(6)2.145 (4)C(17)—C(18)1.384 (7)
W(1)—C(7)2.165 (4)C(17)—C(22)1.394 (7)
W(1)—C(8)2.146 (4)C(18)—C(19)1.403 (11)
Cu(2)—N(2)1.980 (3)C(19)—C(20)1.356 (17)
Cu(2)—N(2)i1.980 (3)C(20)—C(21)1.355 (14)
Cu(2)—N(9)1.954 (3)C(21)—C(22)1.421 (12)
Cu(2)—N(9)i1.954 (3)C(24)—C(25)1.400 (6)
Cu(1)—N(1)2.001 (3)C(24)—C(29)1.403 (5)
Cu(1)—N(3)ii2.022 (3)C(25)—C(26)1.364 (7)
Cu(1)—N(4)iii2.174 (3)C(26)—C(27)1.396 (7)
Cu(1)—N(11)1.984 (3)C(27)—C(28)1.335 (8)
Cu(1)—N(13)1.993 (3)C(28)—C(29)1.408 (7)
N(2)—C(2)1.153 (5)O(1)—H(1)1.05 (12)
N(1)—C(1)1.131 (5)O(1)—H(1)i1.05 (12)
N(3)—C(3)1.137 (5)N(10)—H(10N)0.860
N(4)—C(4)1.140 (5)N(12)—H(12N)0.860
N(5)—C(5)1.136 (5)N(14)—H(14N)0.860
N(6)—C(6)1.145 (6)C(9)—H(9)0.930
N(7)—C(7)1.139 (5)C(11)—H(11)0.930
N(8)—C(8)1.131 (5)C(12)—H(12)0.930
N(9)—C(9)1.312 (6)C(13)—H(13)0.930
N(9)—C(10)1.392 (6)C(14)—H(14)0.930
N(10)—C(9)1.326 (6)C(16)—H(16)0.930
N(10)—C(15)1.396 (8)C(18)—H(18)0.930
N(11)—C(16)1.327 (5)C(19)—H(19)0.930
N(11)—C(17)1.385 (6)C(20)—H(20)0.930
N(12)—C(16)1.362 (7)C(21)—H(21)0.930
N(12)—C(22)1.345 (8)C(23)—H(23)0.930
N(13)—C(23)1.318 (5)C(25)—H(25)0.930
N(13)—C(24)1.394 (5)C(26)—H(26)0.930
N(14)—C(23)1.328 (5)C(27)—H(27)0.930
N(14)—C(29)1.367 (6)C(28)—H(28)0.930
C(10)—C(11)1.378 (8)
N(5)···N(10)iv2.802 (5)C(27)···H(12N)vi3.506
N(7)···N(14)v2.973 (5)C(27)···H(16)vi3.538
N(8)···N(12)vi2.889 (5)C(28)···H(12N)vi3.500
N(8)···C(26)vii3.482 (6)H(9)···H(14)ix3.551
N(8)···C(27)vii3.391 (7)H(10N)···N(5)viii1.968
N(10)···N(5)viii2.802 (5)H(10N)···C(5)viii2.976
N(10)···C(14)ix3.324 (10)H(10N)···C(13)ix3.580
N(10)···C(15)ix3.485 (7)H(10N)···C(14)ix3.389
N(12)···N(8)v2.889 (5)H(10N)···C(15)ix3.472
N(12)···C(28)v3.451 (7)H(11)···C(18)xii3.360
N(14)···N(7)vi2.973 (5)H(11)···H(18)xii2.795
N(14)···C(26)x3.453 (6)H(11)···H(23)xii3.320
N(14)···C(27)x3.515 (7)H(12)···N(6)xii3.152
C(9)···C(14)ix3.531 (10)H(12)···C(23)xii3.104
C(14)···N(10)ix3.324 (10)H(12)···H(18)xii3.476
C(14)···C(9)ix3.531 (10)H(12)···H(20)ix3.589
C(15)···N(10)ix3.485 (7)H(12)···H(21)ix3.453
C(15)···C(15)ix3.539 (8)H(12)···H(23)xii2.652
C(23)···C(27)x3.555 (7)H(12N)···N(8)v2.040
C(24)···C(28)x3.433 (7)H(12N)···C(8)v2.971
C(26)···N(8)vii3.482 (6)H(12N)···C(27)v3.506
C(26)···N(14)x3.453 (6)H(12N)···C(28)v3.500
C(27)···N(8)vii3.391 (7)H(13)···C(20)ix2.980
C(27)···N(14)x3.515 (7)H(13)···H(20)ix2.384
C(27)···C(23)x3.555 (7)H(14)···N(5)viii3.340
C(27)···C(29)x3.524 (7)H(14)···N(6)viii2.890
C(28)···N(12)vi3.451 (7)H(14)···N(9)ix3.538
C(28)···C(24)x3.433 (7)H(14)···N(10)ix3.399
C(29)···C(27)x3.524 (7)H(14)···C(5)viii3.525
N(3)···H(27)vii3.329H(14)···C(6)viii3.310
N(4)···H(28)v3.556H(14)···C(9)ix3.307
N(5)···H(10N)iv1.968H(14)···H(9)ix3.551
N(5)···H(14)iv3.340H(14N)···N(7)vi2.177
N(5)···H(26)vii3.558H(14N)···C(7)vi3.267
N(6)···H(12)xi3.152H(14N)···C(26)x3.489
N(6)···H(14)iv2.890H(14N)···H(26)x3.371
N(6)···H(21)vi3.534H(16)···C(27)v3.538
N(7)···H(14N)v2.177H(16)···H(27)v3.190
N(7)···H(28)v3.123H(18)···C(11)xi3.566
N(8)···H(12N)vi2.040H(18)···H(11)xi2.795
N(8)···H(21)vi3.475H(18)···H(12)xi3.476
N(8)···H(26)vii3.080H(20)···C(13)ix3.222
N(8)···H(27)vii2.904H(20)···H(12)ix3.589
N(9)···H(14)ix3.538H(20)···H(13)ix2.384
N(10)···H(14)ix3.399H(21)···N(6)v3.534
N(12)···H(28)v3.531H(21)···N(8)v3.475
N(13)···H(27)x3.472H(21)···C(6)v3.561
N(14)···H(26)x3.508H(21)···C(8)v3.591
C(3)···H(27)vii3.255H(21)···H(12)ix3.453
C(5)···H(10N)iv2.976H(23)···C(11)xi3.374
C(5)···H(14)iv3.525H(23)···C(12)xi3.024
C(5)···H(27)vii3.555H(23)···H(11)xi3.320
C(6)···H(14)iv3.310H(23)···H(12)xi2.652
C(6)···H(21)vi3.561H(23)···H(27)x3.542
C(7)···H(14N)v3.267H(26)···N(5)vii3.558
C(7)···H(28)v3.453H(26)···N(8)vii3.080
C(8)···H(12N)vi2.971H(26)···N(14)x3.508
C(8)···H(21)vi3.591H(26)···H(14N)x3.371
C(8)···H(27)vii2.947H(27)···N(3)vii3.329
C(9)···H(14)ix3.307H(27)···N(8)vii2.904
C(11)···H(18)xii3.566H(27)···N(13)x3.472
C(11)···H(23)xii3.374H(27)···C(3)vii3.255
C(12)···H(23)xii3.024H(27)···C(5)vii3.555
C(13)···H(10N)ix3.580H(27)···C(8)vii2.947
C(13)···H(20)ix3.222H(27)···C(16)vi3.493
C(14)···H(10N)ix3.389H(27)···C(23)x3.348
C(15)···H(10N)ix3.472H(27)···H(16)vi3.190
C(16)···H(27)v3.493H(27)···H(23)x3.542
C(16)···H(28)v3.513H(28)···N(4)vi3.556
C(18)···H(11)xi3.360H(28)···N(7)vi3.123
C(20)···H(13)ix2.980H(28)···N(12)vi3.531
C(23)···H(12)xi3.104H(28)···C(7)vi3.453
C(23)···H(27)x3.348H(28)···C(16)vi3.513
C(24)···H(28)x3.476H(28)···C(24)x3.476
C(25)···H(28)x3.477H(28)···C(25)x3.477
C(26)···H(14N)x3.489
C(2)—W(1)—C(1)133.28 (14)N(9)—C(10)—C(11)131.1 (5)
C(2)—W(1)—C(3)75.96 (14)N(9)—C(10)—C(15)107.9 (4)
C(2)—W(1)—C(4)133.67 (14)C(11)—C(10)—C(15)120.9 (5)
C(2)—W(1)—C(5)71.25 (15)C(10)—C(11)—C(12)116.2 (6)
C(2)—W(1)—C(6)74.47 (16)C(11)—C(12)—C(13)121.0 (7)
C(2)—W(1)—C(7)72.00 (15)C(12)—C(13)—C(14)122.0 (8)
C(2)—W(1)—C(8)141.36 (14)C(13)—C(14)—C(15)116.5 (7)
C(1)—W(1)—C(3)143.38 (14)N(10)—C(15)—C(10)105.7 (4)
C(1)—W(1)—C(4)71.55 (13)N(10)—C(15)—C(14)130.9 (5)
C(1)—W(1)—C(5)129.57 (14)C(10)—C(15)—C(14)123.3 (6)
C(1)—W(1)—C(6)71.26 (15)N(11)—C(16)—N(12)109.7 (4)
C(1)—W(1)—C(7)79.50 (15)N(11)—C(17)—C(18)130.5 (4)
C(1)—W(1)—C(8)72.70 (15)N(11)—C(17)—C(22)108.2 (4)
C(3)—W(1)—C(4)71.85 (13)C(18)—C(17)—C(22)121.2 (5)
C(3)—W(1)—C(5)74.89 (14)C(17)—C(18)—C(19)117.2 (6)
C(3)—W(1)—C(6)145.36 (15)C(18)—C(19)—C(20)120.8 (7)
C(3)—W(1)—C(7)93.95 (14)C(19)—C(20)—C(21)123.8 (9)
C(3)—W(1)—C(8)97.32 (15)C(20)—C(21)—C(22)116.5 (8)
C(4)—W(1)—C(5)128.28 (15)N(12)—C(22)—C(17)106.0 (5)
C(4)—W(1)—C(6)142.77 (15)N(12)—C(22)—C(21)133.6 (6)
C(4)—W(1)—C(7)77.88 (15)C(17)—C(22)—C(21)120.4 (6)
C(4)—W(1)—C(8)75.95 (15)N(13)—C(23)—N(14)113.3 (4)
C(5)—W(1)—C(6)78.82 (17)N(13)—C(24)—C(25)131.7 (3)
C(5)—W(1)—C(7)143.17 (16)N(13)—C(24)—C(29)108.0 (3)
C(5)—W(1)—C(8)70.29 (15)C(25)—C(24)—C(29)120.1 (4)
C(6)—W(1)—C(7)93.73 (17)C(24)—C(25)—C(26)116.7 (4)
C(6)—W(1)—C(8)94.60 (17)C(25)—C(26)—C(27)122.7 (5)
C(7)—W(1)—C(8)146.55 (16)C(26)—C(27)—C(28)122.0 (5)
N(2)—Cu(2)—N(2)i163.78 (16)C(27)—C(28)—C(29)117.1 (4)
N(2)—Cu(2)—N(9)91.10 (15)N(14)—C(29)—C(24)105.9 (3)
N(2)—Cu(2)—N(9)i92.26 (15)N(14)—C(29)—C(28)132.6 (4)
N(2)i—Cu(2)—N(9)92.26 (15)C(24)—C(29)—C(28)121.4 (4)
N(2)i—Cu(2)—N(9)i91.10 (15)H(1)—O(1)—H(1)i116 (9)
N(9)—Cu(2)—N(9)i156.03 (18)C(9)—N(10)—H(10N)126.4
N(1)—Cu(1)—N(3)ii157.80 (15)C(15)—N(10)—H(10N)126.4
N(1)—Cu(1)—N(4)iii102.33 (14)C(16)—N(12)—H(12N)125.4
N(1)—Cu(1)—N(11)87.14 (14)C(22)—N(12)—H(12N)125.4
N(1)—Cu(1)—N(13)90.06 (13)C(23)—N(14)—H(14N)126.2
N(3)ii—Cu(1)—N(4)iii99.67 (14)C(29)—N(14)—H(14N)126.2
N(3)ii—Cu(1)—N(11)88.48 (14)N(9)—C(9)—H(9)123.7
N(3)ii—Cu(1)—N(13)89.08 (13)N(10)—C(9)—H(9)123.7
N(4)iii—Cu(1)—N(11)93.97 (14)C(10)—C(11)—H(11)121.9
N(4)iii—Cu(1)—N(13)99.71 (14)C(12)—C(11)—H(11)121.9
N(11)—Cu(1)—N(13)166.32 (15)C(11)—C(12)—H(12)119.5
Cu(2)—N(2)—C(2)160.9 (3)C(13)—C(12)—H(12)119.5
Cu(1)—N(1)—C(1)173.5 (3)C(12)—C(13)—H(13)119.0
Cu(1)xiii—N(3)—C(3)175.4 (3)C(14)—C(13)—H(13)119.0
Cu(1)xiv—N(4)—C(4)172.1 (3)C(13)—C(14)—H(14)121.7
Cu(2)—N(9)—C(9)124.8 (3)C(15)—C(14)—H(14)121.8
Cu(2)—N(9)—C(10)128.6 (3)N(11)—C(16)—H(16)125.2
C(9)—N(9)—C(10)106.5 (3)N(12)—C(16)—H(16)125.2
C(9)—N(10)—C(15)107.3 (4)C(17)—C(18)—H(18)121.4
Cu(1)—N(11)—C(16)127.3 (3)C(19)—C(18)—H(18)121.4
Cu(1)—N(11)—C(17)125.9 (2)C(18)—C(19)—H(19)119.6
C(16)—N(11)—C(17)106.8 (3)C(20)—C(19)—H(19)119.6
C(16)—N(12)—C(22)109.2 (4)C(19)—C(20)—H(20)118.1
Cu(1)—N(13)—C(23)124.3 (3)C(21)—C(20)—H(20)118.1
Cu(1)—N(13)—C(24)130.6 (2)C(20)—C(21)—H(21)121.7
C(23)—N(13)—C(24)105.1 (3)C(22)—C(21)—H(21)121.7
C(23)—N(14)—C(29)107.6 (3)N(13)—C(23)—H(23)123.3
W(1)—C(2)—N(2)175.6 (3)N(14)—C(23)—H(23)123.4
W(1)—C(1)—N(1)174.2 (3)C(24)—C(25)—H(25)121.7
W(1)—C(3)—N(3)175.3 (3)C(26)—C(25)—H(25)121.7
W(1)—C(4)—N(4)178.7 (3)C(25)—C(26)—H(26)118.7
W(1)—C(5)—N(5)176.6 (3)C(27)—C(26)—H(26)118.7
W(1)—C(6)—N(6)174.9 (4)C(26)—C(27)—H(27)119.0
W(1)—C(7)—N(7)177.9 (4)C(28)—C(27)—H(27)119.0
W(1)—C(8)—N(8)178.4 (4)C(27)—C(28)—H(28)121.4
N(9)—C(9)—N(10)112.6 (4)C(29)—C(28)—H(28)121.4
C(2)—W(1)—C(1)—N(1)131 (3)N(13)—Cu(1)—N(1)—C(1)82 (3)
C(1)—W(1)—C(2)—N(2)53 (4)N(3)ii—Cu(1)—N(4)iii—C(4)iii100 (2)
C(2)—W(1)—C(3)—N(3)64 (4)N(4)iii—Cu(1)—N(3)ii—C(3)ii165 (4)
C(3)—W(1)—C(2)—N(2)153 (4)N(3)ii—Cu(1)—N(11)—C(16)82.6 (3)
C(2)—W(1)—C(4)—N(4)115 (14)N(3)ii—Cu(1)—N(11)—C(17)98.0 (3)
C(4)—W(1)—C(2)—N(2)160 (4)N(11)—Cu(1)—N(3)ii—C(3)ii72 (4)
C(2)—W(1)—C(5)—N(5)89 (6)N(3)ii—Cu(1)—N(13)—C(23)47.8 (3)
C(5)—W(1)—C(2)—N(2)74 (4)N(3)ii—Cu(1)—N(13)—C(24)133.9 (3)
C(2)—W(1)—C(6)—N(6)22 (5)N(13)—Cu(1)—N(3)ii—C(3)ii95 (4)
C(6)—W(1)—C(2)—N(2)9 (4)N(4)iii—Cu(1)—N(11)—C(16)17.0 (3)
C(2)—W(1)—C(7)—N(7)51 (11)N(4)iii—Cu(1)—N(11)—C(17)162.4 (3)
C(7)—W(1)—C(2)—N(2)108 (4)N(11)—Cu(1)—N(4)iii—C(4)iii11 (2)
C(2)—W(1)—C(8)—N(8)98 (13)N(4)iii—Cu(1)—N(13)—C(23)147.5 (3)
C(8)—W(1)—C(2)—N(2)68 (4)N(4)iii—Cu(1)—N(13)—C(24)34.3 (3)
C(1)—W(1)—C(3)—N(3)148 (4)N(13)—Cu(1)—N(4)iii—C(4)iii169 (2)
C(3)—W(1)—C(1)—N(1)93 (3)N(11)—Cu(1)—N(13)—C(23)32.0 (7)
C(1)—W(1)—C(4)—N(4)112 (14)N(11)—Cu(1)—N(13)—C(24)146.3 (5)
C(4)—W(1)—C(1)—N(1)95 (3)N(13)—Cu(1)—N(11)—C(16)162.4 (5)
C(1)—W(1)—C(5)—N(5)140 (6)N(13)—Cu(1)—N(11)—C(17)18.1 (7)
C(5)—W(1)—C(1)—N(1)30 (3)Cu(2)—N(2)—C(2)—W(1)28 (5)
C(1)—W(1)—C(6)—N(6)126 (5)Cu(1)—N(1)—C(1)—W(1)95 (4)
C(6)—W(1)—C(1)—N(1)87 (3)Cu(1)xiii—N(3)—C(3)—W(1)53 (7)
C(1)—W(1)—C(7)—N(7)166 (11)Cu(1)xiv—N(4)—C(4)—W(1)11 (16)
C(7)—W(1)—C(1)—N(1)176 (3)Cu(2)—N(9)—C(9)—N(10)178.3 (3)
C(1)—W(1)—C(8)—N(8)42 (13)Cu(2)—N(9)—C(10)—C(11)2.3 (8)
C(8)—W(1)—C(1)—N(1)15 (3)Cu(2)—N(9)—C(10)—C(15)178.3 (3)
C(3)—W(1)—C(4)—N(4)66 (14)C(9)—N(9)—C(10)—C(11)174.8 (6)
C(4)—W(1)—C(3)—N(3)150 (4)C(9)—N(9)—C(10)—C(15)1.2 (6)
C(3)—W(1)—C(5)—N(5)9 (6)C(10)—N(9)—C(9)—N(10)1.1 (6)
C(5)—W(1)—C(3)—N(3)10 (4)C(9)—N(10)—C(15)—C(10)0.3 (6)
C(3)—W(1)—C(6)—N(6)54 (5)C(9)—N(10)—C(15)—C(14)178.9 (7)
C(6)—W(1)—C(3)—N(3)31 (4)C(15)—N(10)—C(9)—N(9)0.5 (6)
C(3)—W(1)—C(7)—N(7)22 (11)Cu(1)—N(11)—C(16)—N(12)179.4 (3)
C(7)—W(1)—C(3)—N(3)134 (4)Cu(1)—N(11)—C(17)—C(18)0.3 (5)
C(3)—W(1)—C(8)—N(8)174 (13)Cu(1)—N(11)—C(17)—C(22)178.7 (3)
C(8)—W(1)—C(3)—N(3)78 (4)C(16)—N(11)—C(17)—C(18)179.8 (3)
C(4)—W(1)—C(5)—N(5)42 (7)C(16)—N(11)—C(17)—C(22)0.9 (5)
C(5)—W(1)—C(4)—N(4)14 (14)C(17)—N(11)—C(16)—N(12)0.1 (4)
C(4)—W(1)—C(6)—N(6)123 (5)C(16)—N(12)—C(22)—C(17)1.3 (6)
C(6)—W(1)—C(4)—N(4)115 (14)C(16)—N(12)—C(22)—C(21)179.3 (7)
C(4)—W(1)—C(7)—N(7)93 (11)C(22)—N(12)—C(16)—N(11)0.7 (6)
C(7)—W(1)—C(4)—N(4)165 (14)Cu(1)—N(13)—C(23)—N(14)177.5 (3)
C(4)—W(1)—C(8)—N(8)117 (13)Cu(1)—N(13)—C(24)—C(25)5.3 (6)
C(8)—W(1)—C(4)—N(4)36 (14)Cu(1)—N(13)—C(24)—C(29)178.5 (3)
C(5)—W(1)—C(6)—N(6)95 (5)C(23)—N(13)—C(24)—C(25)176.2 (4)
C(6)—W(1)—C(5)—N(5)166 (6)C(23)—N(13)—C(24)—C(29)0.0 (3)
C(5)—W(1)—C(7)—N(7)48 (11)C(24)—N(13)—C(23)—N(14)1.1 (5)
C(7)—W(1)—C(5)—N(5)85 (6)C(23)—N(14)—C(29)—C(24)1.6 (5)
C(5)—W(1)—C(8)—N(8)103 (13)C(23)—N(14)—C(29)—C(28)174.7 (5)
C(8)—W(1)—C(5)—N(5)95 (6)C(29)—N(14)—C(23)—N(13)1.8 (5)
C(6)—W(1)—C(7)—N(7)124 (11)N(9)—C(10)—C(11)—C(12)178.2 (6)
C(7)—W(1)—C(6)—N(6)48 (5)N(9)—C(10)—C(15)—N(10)0.9 (6)
C(6)—W(1)—C(8)—N(8)27 (13)N(9)—C(10)—C(15)—C(14)179.6 (6)
C(8)—W(1)—C(6)—N(6)164 (5)C(11)—C(10)—C(15)—N(10)175.5 (5)
C(7)—W(1)—C(8)—N(8)77 (13)C(11)—C(10)—C(15)—C(14)3.2 (10)
C(8)—W(1)—C(7)—N(7)132 (11)C(15)—C(10)—C(11)—C(12)2.7 (9)
N(2)—Cu(2)—N(2)i—C(2)i7.9 (13)C(10)—C(11)—C(12)—C(13)1.5 (11)
N(2)i—Cu(2)—N(2)—C(2)7.9 (13)C(11)—C(12)—C(13)—C(14)0.6 (13)
N(2)—Cu(2)—N(9)—C(9)33.0 (4)C(12)—C(13)—C(14)—C(15)0.8 (14)
N(2)—Cu(2)—N(9)—C(10)143.5 (4)C(13)—C(14)—C(15)—N(10)176.3 (7)
N(9)—Cu(2)—N(2)—C(2)109.8 (10)C(13)—C(14)—C(15)—C(10)2.1 (12)
N(2)—Cu(2)—N(9)i—C(9)i131.1 (4)N(11)—C(17)—C(18)—C(19)179.7 (5)
N(2)—Cu(2)—N(9)i—C(10)i52.3 (4)N(11)—C(17)—C(22)—N(12)1.3 (5)
N(9)i—Cu(2)—N(2)—C(2)93.9 (10)N(11)—C(17)—C(22)—C(21)179.7 (5)
N(2)i—Cu(2)—N(9)—C(9)131.1 (4)C(18)—C(17)—C(22)—N(12)179.6 (4)
N(2)i—Cu(2)—N(9)—C(10)52.3 (4)C(18)—C(17)—C(22)—C(21)1.3 (8)
N(9)—Cu(2)—N(2)i—C(2)i93.9 (10)C(22)—C(17)—C(18)—C(19)1.4 (8)
N(2)i—Cu(2)—N(9)i—C(9)i33.0 (4)C(17)—C(18)—C(19)—C(20)0.5 (10)
N(2)i—Cu(2)—N(9)i—C(10)i143.5 (4)C(18)—C(19)—C(20)—C(21)0.6 (11)
N(9)i—Cu(2)—N(2)i—C(2)i109.8 (10)C(19)—C(20)—C(21)—C(22)0.8 (13)
N(9)—Cu(2)—N(9)i—C(9)i131.1 (4)C(20)—C(21)—C(22)—N(12)178.0 (7)
N(9)—Cu(2)—N(9)i—C(10)i45.5 (6)C(20)—C(21)—C(22)—C(17)0.1 (8)
N(9)i—Cu(2)—N(9)—C(9)131.1 (4)N(13)—C(24)—C(25)—C(26)175.5 (4)
N(9)i—Cu(2)—N(9)—C(10)45.5 (6)N(13)—C(24)—C(29)—N(14)1.0 (4)
N(1)—Cu(1)—N(3)ii—C(3)ii7 (4)N(13)—C(24)—C(29)—C(28)175.8 (4)
N(3)ii—Cu(1)—N(1)—C(1)5 (3)C(25)—C(24)—C(29)—N(14)177.8 (4)
N(1)—Cu(1)—N(4)iii—C(4)iii77 (2)C(25)—C(24)—C(29)—C(28)0.9 (6)
N(4)iii—Cu(1)—N(1)—C(1)178 (2)C(29)—C(24)—C(25)—C(26)0.3 (6)
N(1)—Cu(1)—N(11)—C(16)119.2 (3)C(24)—C(25)—C(26)—C(27)0.3 (6)
N(1)—Cu(1)—N(11)—C(17)60.3 (3)C(25)—C(26)—C(27)—C(28)0.9 (8)
N(11)—Cu(1)—N(1)—C(1)84 (2)C(26)—C(27)—C(28)—C(29)1.4 (8)
N(1)—Cu(1)—N(13)—C(23)110.0 (3)C(27)—C(28)—C(29)—N(14)177.3 (5)
N(1)—Cu(1)—N(13)—C(24)68.3 (3)C(27)—C(28)—C(29)—C(24)1.5 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y+2, z+1/2; (vi) x, y+2, z1/2; (vii) x+1/2, y+3/2, z; (viii) x, y+1, z+1/2; (ix) x, y+1, z+1; (x) x+1/2, y+5/2, z; (xi) x, y+1, z+1/2; (xii) x, y1, z+1/2; (xiii) x, y1, z; (xiv) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O(1)—H(1)···N(6)1.05 (12)2.20 (12)3.178 (7)154 (10)
N(10)—H(10N)···N(5)viii0.861.972.802 (5)163
N(12)—H(12N)···N(8)v0.862.042.888 (5)169
N(14)—H(14N)···N(7)vi0.862.182.973 (5)154
Symmetry codes: (v) x, y+2, z+1/2; (vi) x, y+2, z1/2; (viii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu3W2(CN)16(C7H6N2)6(H2O)]
Mr1701.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)32.0103 (8), 10.2389 (3), 19.5533 (5)
β (°) 93.8269 (8)
V3)6394.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.63
Crystal size (mm)0.45 × 0.12 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.327, 0.690
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
31073, 7321, 6376
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.02
No. of reflections7321
No. of parameters421
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.043P)2 + 13.526P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.85, 1.08

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and VESTA (Momma & Izumi, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O(1)—H(1)···N(6)1.05 (12)2.20 (12)3.178 (7)154 (10)
N(10)—H(10N)···N(5)i0.8601.9682.802 (5)163.1
N(12)—H(12N)···N(8)ii0.8602.0402.888 (5)168.6
N(14)—H(14N)···N(7)iii0.8602.1772.973 (5)153.8
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+1/2; (iii) x, y+2, z1/2.
 

Acknowledgements

The present research was supported in part by a Grant-in-Aid for Young Scientists (S) from JSPS, a grant from the Global COE Program "Chemistry Innovation through Cooperation of Science and Engineering" and the Photon Frontier Network Program from MEXT, Japan, the Izumi Science and Technology Foundation. YT is grateful to the JSPS Research Fellowships for Young Scientists.

References

First citationCatala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587–595.  Web of Science CrossRef CAS Google Scholar
First citationHerrera, J. M., Franz, P., Podgajny, R., Pilkington, M., Biner, M., Decurtins, S., Stoeckli-Evans, H., Neels, A., Garde, R., Dromzée, Y., Julve, M., Sieklucka, B., Hashimoto, K., Ohkoshi, S. & Verdaguer, M. (2008). C. R. Chim. 11, 1192–1199.  Web of Science CrossRef CAS Google Scholar
First citationHerrera, J. M., Marvaud, V., Verdaguer, M., Marrot, J., Kalisz, M. & Mathonière, C. (2004). Angew. Chem. Int. Ed. 43, 5468–5471.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKaneko, S., Tsunobuchi, Y., Sakurai, S. & Ohkoshi, S. (2007). Chem. Phys. Lett. 446, 292–296.  Web of Science CrossRef CAS Google Scholar
First citationKosaka, W., Imoto, K., Tsunobuchi, Y. & Ohkoshi, S. (2009). Inorg. Chem. 48, 4604–4606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241–322.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2006). IUCr Commission on Crystallographic Computing Newsletter, 130, 106–119.  Google Scholar
First citationOhkoshi, S., Arimoto, Y., Hozumi, T., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). Chem. Commun. pp. 2772–2773.  Web of Science CSD CrossRef Google Scholar
First citationOhkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048–3054.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. (2006). J. Am. Chem. Soc. 128, 5320–5321.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084–3085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPodgajny, R., Korzeniak, T., Bałanda, M., Wasiutyński, T., Errington, W., Kemp, J. T., Alcock, W. N. & Sieklucka, B. (2002). Chem. Commun. pp. 1138–1139.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Pinkowicz, D., Nowicka, B., Korzeniak, T., Bałanda, M., Wasiutyński, T., Pełka, R., Makarewicz, M., Czapa, M., Rams, M., Gaweł, B. & Łasocha, W. (2009). CrystEngComm, 11, 2032–2039.  Web of Science CrossRef CAS Google Scholar
First citationZhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095–5101.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m403-m404
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds