organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Chloro­benzo­yl)-4-hydr­­oxy-2H-1,2-benzo­thia­zine 1,1-dioxide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 6 March 2010; accepted 16 March 2010; online 20 March 2010)

In the title compound, C15H10ClNO4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.476 (5) and 0.227 (5) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The structure is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. In addition, intra­molecular O—H⋯O and C—H⋯N inter­actions are also present.

Related literature

For the biological activity of 1,2-benzothia­zine derivatives, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]); Lombardino & Wiseman, (1972[Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.]); Gupta et al. (1993[Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589-592.], 2002[Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105-111.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Berryman et al. (1998[Berryman, K. A., Edmunds, J. J., Bunker, A. M., Haleen, S., Bryant, J., Welch, K. M. & Doherty, A. M. (1998). Bioorg. Med. Chem. 6, 1447-1456.]). For comparative bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.])

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO4S

  • Mr = 335.75

  • Triclinic, [P \overline 1]

  • a = 4.7151 (3) Å

  • b = 12.2879 (8) Å

  • c = 12.5809 (6) Å

  • α = 81.375 (3)°

  • β = 84.463 (3)°

  • γ = 85.608 (3)°

  • V = 715.88 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 295 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.942, Tmax = 0.958

  • 4352 measured reflections

  • 3202 independent reflections

  • 2783 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.121

  • S = 1.09

  • 3202 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.03 2.872 (3) 168
O3—H3O⋯O4 0.82 1.80 2.525 (3) 146
C2—H2⋯O1ii 0.93 2.54 3.279 (3) 136
C14—H14⋯O2iii 0.93 2.58 3.435 (3) 153
C15—H15⋯N1 0.93 2.54 3.009 (4) 112
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2-Benzothiazine 1,1-dioxides represent a class of pharmaceutically important heterocyclic compounds that have received considerable attention because of their dynamic structural features and a wide range of biological activity, e.g., anti-inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anti-cancer (Gupta et al., 1993), anti-bacterial (Zia-ur-Rehman et al., 2006) and endothelin receptor antagonists (Berryman et al., 1998), etc. In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Ahmad et al., 2010), we herein report the synthesis and crystal structure of the title compound.

The title molecule is presented in Fig. 1. The bond distances are as expected (Allen et al., 1987) and agree with the corresponding parameters reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms S1 and N1 displaced by 0.476 (5) and 0.227 (5) Å , respectively, on the opposite sides from the mean plane formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types N—H···O and C—H···O. In addition, intramolecular interactions O3—H3O···O4 and C15—H15···N1 are also present consolidating the crystal packing; details are provided in Table 1.

Related literature top

For the biological activity of 1,2-benzothiazine derivatives, see: Ahmad et al. (2010); Lombardino & Wiseman, (1972); Gupta et al. (1993, 2002); Zia-ur-Rehman et al. (2006); Berryman et al. (1998). For comparative bond distances, see: Allen et al. (1987). For related structures, see: Siddiqui et al. (2008)

Experimental top

Sodium metal (4.83 g, 210 mmol) was dissolved in dry methanol (35 ml) and 2-[2-(3-chlorophenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (10.07 g, 30 mmol) was added to it. The mixture was refluxed for 30 minutes. The contents of the flask were cooled to room temperature and pH was adjusted at 3.0 using 5% HCl. A pale yellow precipitate of the title compound was filtered and washed with cold methanol. Crystals suitable for crystallographic study were grown from a methanolic solution by slow evaporation at room temperature. Yield, 74%; m.p. 438-440 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map, they were included at geometrically idealized positions and refined using a riding-model approximation with the following constraints: O—H, N—H and C—H distances were set to 0.82, 0.86 and 0.93 Å, respectively, and Uiso(H) = 1.2Ueq(parent atom). The final difference map was essentially featureless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).
3-(3-Chlorobenzoyl)-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide top
Crystal data top
C15H10ClNO4SZ = 2
Mr = 335.75F(000) = 344
Triclinic, P1Dx = 1.558 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7151 (3) ÅCell parameters from 1649 reflections
b = 12.2879 (8) Åθ = 1.0–27.5°
c = 12.5809 (6) ŵ = 0.43 mm1
α = 81.375 (3)°T = 295 K
β = 84.463 (3)°Block, yellow
γ = 85.608 (3)°0.14 × 0.12 × 0.10 mm
V = 715.88 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 66
Tmin = 0.942, Tmax = 0.958k = 1515
4352 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.025P)2 + 0.745P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H10ClNO4Sγ = 85.608 (3)°
Mr = 335.75V = 715.88 (7) Å3
Triclinic, P1Z = 2
a = 4.7151 (3) ÅMo Kα radiation
b = 12.2879 (8) ŵ = 0.43 mm1
c = 12.5809 (6) ÅT = 295 K
α = 81.375 (3)°0.14 × 0.12 × 0.10 mm
β = 84.463 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2783 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.958Rint = 0.027
4352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.45 e Å3
3202 reflectionsΔρmin = 0.36 e Å3
200 parameters
Special details top

Experimental. IR (KBr) 3157, 1615, 1358, 1156 cm-1, MS m/z: 335.2 [M+]. 1H NMR (DMSO-d6); 7.64 (t, 2H, J = 8.0 Hz, Ar—H), 7.75 (d, 2H, J = 8.0 Hz, Ar—H), 7.96 (d, 1H, J = 10.0 Hz, Ar—H), 7.96 (s, 1H, J = 16.4 Hz, Ar—H), 8.18 (t, 2H, J = 3.2 Hz, Ar—H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.12832 (17)0.15369 (6)0.14547 (7)0.0618 (2)
S10.00971 (13)0.31098 (5)0.38523 (5)0.03988 (17)
O10.1096 (5)0.34309 (18)0.47468 (16)0.0601 (6)
O20.2260 (4)0.23281 (16)0.40650 (15)0.0511 (5)
O30.0663 (5)0.30935 (17)0.04835 (15)0.0604 (6)
H3O0.03720.25960.02570.073*
O40.3079 (4)0.15059 (17)0.05644 (14)0.0553 (5)
N10.2456 (4)0.26558 (18)0.30655 (17)0.0441 (5)
H1N0.41440.25190.32770.053*
C10.1507 (5)0.4240 (2)0.3008 (2)0.0415 (5)
C20.2846 (7)0.5148 (2)0.3434 (3)0.0563 (7)
H20.28150.52040.41620.068*
C30.4223 (8)0.5961 (3)0.2754 (3)0.0715 (10)
H30.51250.65750.30250.086*
C40.4271 (9)0.5873 (3)0.1678 (3)0.0748 (10)
H40.52410.64210.12330.090*
C50.2904 (7)0.4985 (3)0.1253 (3)0.0623 (8)
H50.29260.49430.05220.075*
C60.1488 (5)0.4148 (2)0.1915 (2)0.0425 (5)
C70.0006 (5)0.3206 (2)0.1462 (2)0.0415 (5)
C80.1900 (5)0.2482 (2)0.20148 (19)0.0386 (5)
C90.3263 (5)0.1547 (2)0.1542 (2)0.0407 (5)
C100.4876 (5)0.0619 (2)0.21729 (19)0.0394 (5)
C110.7101 (5)0.0062 (2)0.1617 (2)0.0413 (5)
H110.76340.03090.08950.050*
C120.8495 (5)0.0854 (2)0.2149 (2)0.0435 (6)
C130.7712 (7)0.1251 (2)0.3214 (2)0.0553 (7)
H130.86800.18700.35620.066*
C140.5477 (7)0.0714 (2)0.3752 (2)0.0589 (8)
H140.49100.09840.44650.071*
C150.4057 (6)0.0222 (2)0.3248 (2)0.0494 (6)
H150.25680.05830.36230.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0599 (4)0.0588 (4)0.0699 (5)0.0225 (3)0.0186 (4)0.0246 (4)
S10.0367 (3)0.0471 (3)0.0379 (3)0.0050 (2)0.0090 (2)0.0131 (2)
O10.0647 (13)0.0721 (14)0.0503 (11)0.0158 (10)0.0234 (10)0.0297 (10)
O20.0417 (10)0.0556 (11)0.0526 (11)0.0028 (8)0.0053 (8)0.0035 (9)
O30.0839 (15)0.0576 (13)0.0399 (10)0.0222 (11)0.0180 (10)0.0126 (9)
O40.0659 (13)0.0607 (12)0.0395 (10)0.0191 (10)0.0104 (9)0.0160 (8)
N10.0318 (10)0.0567 (13)0.0484 (12)0.0085 (9)0.0125 (9)0.0226 (10)
C10.0394 (13)0.0387 (12)0.0480 (14)0.0002 (10)0.0061 (10)0.0116 (10)
C20.0612 (18)0.0490 (16)0.0619 (17)0.0089 (13)0.0079 (14)0.0232 (13)
C30.084 (2)0.0411 (16)0.089 (3)0.0195 (15)0.0117 (19)0.0194 (15)
C40.095 (3)0.0494 (18)0.075 (2)0.0278 (17)0.0176 (19)0.0025 (15)
C50.078 (2)0.0501 (17)0.0551 (17)0.0170 (15)0.0116 (15)0.0028 (13)
C60.0442 (13)0.0365 (12)0.0466 (14)0.0033 (10)0.0058 (11)0.0067 (10)
C70.0455 (13)0.0409 (13)0.0389 (12)0.0028 (10)0.0068 (10)0.0092 (10)
C80.0358 (12)0.0424 (13)0.0390 (12)0.0015 (10)0.0045 (9)0.0118 (10)
C90.0389 (12)0.0435 (13)0.0409 (13)0.0001 (10)0.0036 (10)0.0109 (10)
C100.0428 (13)0.0381 (12)0.0385 (12)0.0001 (10)0.0051 (10)0.0094 (9)
C110.0445 (13)0.0420 (13)0.0387 (12)0.0008 (10)0.0066 (10)0.0099 (10)
C120.0437 (13)0.0426 (13)0.0476 (14)0.0028 (10)0.0130 (11)0.0140 (11)
C130.073 (2)0.0411 (14)0.0527 (16)0.0030 (13)0.0202 (14)0.0049 (12)
C140.082 (2)0.0514 (16)0.0420 (15)0.0081 (15)0.0055 (14)0.0009 (12)
C150.0567 (16)0.0492 (15)0.0428 (14)0.0057 (12)0.0035 (12)0.0122 (11)
Geometric parameters (Å, º) top
Cl1—C121.739 (3)C4—H40.9300
S1—O11.4240 (18)C5—C61.394 (4)
S1—O21.434 (2)C5—H50.9300
S1—N11.604 (2)C6—C71.467 (3)
S1—C11.747 (3)C7—C81.377 (3)
O3—C71.327 (3)C8—C91.451 (3)
O3—H3O0.8200C9—C101.491 (3)
O4—C91.250 (3)C10—C151.395 (4)
N1—C81.422 (3)C10—C111.396 (3)
N1—H1N0.8600C11—C121.376 (3)
C1—C21.391 (4)C11—H110.9300
C1—C61.396 (3)C12—C131.380 (4)
C2—C31.380 (4)C13—C141.376 (4)
C2—H20.9300C13—H130.9300
C3—C41.377 (5)C14—C151.385 (4)
C3—H30.9300C14—H140.9300
C4—C51.376 (4)C15—H150.9300
O1—S1—O2118.25 (13)O3—C7—C8122.4 (2)
O1—S1—N1108.39 (12)O3—C7—C6115.1 (2)
O2—S1—N1109.12 (12)C8—C7—C6122.6 (2)
O1—S1—C1112.18 (12)C7—C8—N1118.7 (2)
O2—S1—C1106.33 (11)C7—C8—C9120.5 (2)
N1—S1—C1101.20 (12)N1—C8—C9120.8 (2)
C7—O3—H3O109.5O4—C9—C8119.2 (2)
C8—N1—S1119.34 (16)O4—C9—C10117.9 (2)
C8—N1—H1N120.3C8—C9—C10122.9 (2)
S1—N1—H1N120.3C15—C10—C11119.6 (2)
C2—C1—C6121.6 (2)C15—C10—C9122.6 (2)
C2—C1—S1120.7 (2)C11—C10—C9117.4 (2)
C6—C1—S1117.43 (18)C12—C11—C10119.3 (2)
C3—C2—C1118.6 (3)C12—C11—H11120.4
C3—C2—H2120.7C10—C11—H11120.4
C1—C2—H2120.7C11—C12—C13121.6 (2)
C4—C3—C2120.6 (3)C11—C12—Cl1119.0 (2)
C4—C3—H3119.7C13—C12—Cl1119.3 (2)
C2—C3—H3119.7C14—C13—C12118.9 (3)
C5—C4—C3120.9 (3)C14—C13—H13120.5
C5—C4—H4119.6C12—C13—H13120.5
C3—C4—H4119.6C13—C14—C15121.0 (3)
C4—C5—C6120.2 (3)C13—C14—H14119.5
C4—C5—H5119.9C15—C14—H14119.5
C6—C5—H5119.9C14—C15—C10119.6 (3)
C5—C6—C1118.2 (2)C14—C15—H15120.2
C5—C6—C7120.3 (2)C10—C15—H15120.2
C1—C6—C7121.5 (2)
O1—S1—N1—C8167.9 (2)O3—C7—C8—N1179.3 (2)
O2—S1—N1—C862.0 (2)C6—C7—C8—N10.1 (4)
C1—S1—N1—C849.8 (2)O3—C7—C8—C90.6 (4)
O1—S1—C1—C235.9 (3)C6—C7—C8—C9178.6 (2)
O2—S1—C1—C294.9 (2)S1—N1—C8—C736.5 (3)
N1—S1—C1—C2151.2 (2)S1—N1—C8—C9142.2 (2)
O1—S1—C1—C6150.4 (2)C7—C8—C9—O412.1 (4)
O2—S1—C1—C678.9 (2)N1—C8—C9—O4169.2 (2)
N1—S1—C1—C635.0 (2)C7—C8—C9—C10167.5 (2)
C6—C1—C2—C31.1 (5)N1—C8—C9—C1011.2 (4)
S1—C1—C2—C3172.4 (3)O4—C9—C10—C15143.7 (3)
C1—C2—C3—C40.2 (5)C8—C9—C10—C1535.9 (4)
C2—C3—C4—C51.3 (6)O4—C9—C10—C1129.3 (3)
C3—C4—C5—C61.2 (6)C8—C9—C10—C11151.1 (2)
C4—C5—C6—C10.1 (5)C15—C10—C11—C121.6 (4)
C4—C5—C6—C7179.4 (3)C9—C10—C11—C12174.8 (2)
C2—C1—C6—C51.2 (4)C10—C11—C12—C131.3 (4)
S1—C1—C6—C5172.5 (2)C10—C11—C12—Cl1179.47 (18)
C2—C1—C6—C7178.3 (3)C11—C12—C13—C140.2 (4)
S1—C1—C6—C78.0 (3)Cl1—C12—C13—C14179.1 (2)
C5—C6—C7—O314.6 (4)C12—C13—C14—C151.3 (5)
C1—C6—C7—O3165.9 (2)C13—C14—C15—C100.9 (4)
C5—C6—C7—C8166.2 (3)C11—C10—C15—C140.5 (4)
C1—C6—C7—C813.3 (4)C9—C10—C15—C14173.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.032.872 (3)168
O3—H3O···O40.821.802.525 (3)146
C2—H2···O1ii0.932.543.279 (3)136
C14—H14···O2iii0.932.583.435 (3)153
C15—H15···N10.932.543.009 (4)112
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClNO4S
Mr335.75
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.7151 (3), 12.2879 (8), 12.5809 (6)
α, β, γ (°)81.375 (3), 84.463 (3), 85.608 (3)
V3)715.88 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.942, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
4352, 3202, 2783
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.121, 1.09
No. of reflections3202
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.36

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.032.872 (3)167.6
O3—H3O···O40.821.802.525 (3)146.0
C2—H2···O1ii0.932.543.279 (3)136.3
C14—H14···O2iii0.932.583.435 (3)152.9
C15—H15···N10.932.543.009 (4)111.8
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBerryman, K. A., Edmunds, J. J., Bunker, A. M., Haleen, S., Bryant, J., Welch, K. M. & Doherty, A. M. (1998). Bioorg. Med. Chem. 6, 1447–1456.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589–592.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848–849.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds