organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-{2-[1-(Benzyl­imino)eth­yl]phen­yl}benzamide

aDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 27 February 2010; accepted 28 February 2010; online 3 March 2010)

In the title compound, C22H20N2O, the molecular conformation is supported by an intra­molecular N—H⋯N hydrogen bond, resulting in an almost planar [mean deviation = 0.048 (2) Å] S(6) ring. The dihedral angles between the central benzene ring and the imine- and amide-substituted aromatic rings are 76.6 (2) and 11.7 (2)°, respectively.

Related literature

For background to the application of β-diketiminate-containing metal complexes in ring-opening polymerization, see: Chamberlain et al. (2001[Chamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229-3238.]); Chisholm et al. (2002[Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2002). Inorg. Chem. 41, 2785-2794.]). For related structures, see: Gao et al. (2008[Gao, W., Cui, D., Liu, X., Zhang, Y. & Mu, Y. (2008). Organometallics, 27, 5889-5893.]); Tsai et al. (2009[Tsai, Y.-H., Lin, C.-H., Lin, C.-C. & Ko, B.-T. (2009). J. Polym. Sci. Part. A Polym. Chem. 47, 4927-4936.]); Liu et al. (2009[Liu, Y.-C., Lin, C.-H., Chen, H.-L. & Ko, B.-T. (2009). Acta Cryst. E65, o2791.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O

  • Mr = 328.40

  • Monoclinic, P 21 /c

  • a = 10.4213 (4) Å

  • b = 17.0799 (7) Å

  • c = 10.8028 (5) Å

  • β = 114.394 (2)°

  • V = 1751.18 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.989

  • 20052 measured reflections

  • 4263 independent reflections

  • 2414 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.161

  • S = 1.03

  • 4263 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1 0.86 1.97 2.670 (2) 138

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the excellent application of β-diketiminate containing metal complexes in ring-opening polymerization (Chamberlain et al., 2001; Chisholm et al., 2002), structurally-related ligand precursors were synthesized and examined catalytic activities in ring-opening polymerization. For instance, anilido-aldimine (AA) ligands have been designed to control the steric or electronic effect to provide a single active metal center for minimizing the side reaction. Recently, a series of N,N,N-tridentate AA rare-earth metal, magnesium and zinc complexes have demonstrated that the nitrogen atom of pendant arm can coordinate with the metal to increase the sterics and coordination sites of the ligand, creating a single active site nature to initiate the polymerization of ε-caprolactone and L-lactide (Gao et al., 2008; Tsai et al., 2009). In order to investigate ligand precursors bearing similar chelating systems and iso-electronic features related to anilido-aldimine ligands, our group is interested in developing new AA-like ligands from the aminoacetophenone derivatives. Herein, we report the synthesis and crystal structure of the title compound, (I), a potential N,N,O-tridentate AA-like ligand for the preparation of aluminum, magnesium and zinc complexes (Scheme 1).

The solid structure of I reveals the phenyl configuration containing one benzamide functionalized group and one benzyl substituted imine group on the ortho-position (Fig. 1). It was found that there is an intramolecular N–H···N hydrogen bond between the amide and imine groups. The distance of N···H is substantially shorter than the van der Waals distance of 2.75Å for the N and H atoms. It is interesting to note that the six-member ring (N1/C9/C10/C15/N2/H2B) formed from the N–H···N hydrogen-bond is almost coplanar with the mean deviation of 0.048 (2)Å. These bond distances of benzyl substituted imine group are similar to those found in the crystal structure of (E)-N-(2-((benzylimino)methyl)phenyl)-2,6-diisopropylaniline (Liu et al., 2009).

Related literature top

For background to the application of β-diketiminate-containing metal complexes in ring-opening polymerization, see: Chamberlain et al. (2001); Chisholm et al. (2002). For related structures, see: Gao et al. (2008); Tsai et al. (2009); Liu et al. (2009).

Experimental top

The title compound I was synthesized by the following procedures (Fig. 2):

N-(2-acetylphenyl)benzamide (2). In a 50 ml round bottom flask, benzoyl chloride (15.5 g, 110.7 mmol) was added to a solution of 2'-aminoacetophenone, (1) (10.0 g, 74.1 mmol) dissolved in 5% NaOH(aq) solution (20 ml). The mixture was stirred vigorously for 2 h and the resultant precipitate was washed with dichloromethane (3×50 ml), followed by deionized water (2×50 ml). The organic layer was dried over anhydrous magnesium sulfate and the solvent was dried under vacuum to give white solids. Yield: 14.09 g (86 %). 1H NMR (CDCl3, ppm): δ 12.69 (s, 1H, NH), 8.97 (d, J = 8.7 Hz, 1H, PhH), 8.06 (d, J = 9.0 Hz, 2H, PhH), 7.95 (d, J = 7.8 Hz, 1H, PhH) , 7.48-7.64 (m, 4H, PhH), 7.15 (t, J = 7.5 Hz, 1H, PhH), 2.70 (s, 3H, CH3CO).

(E)-N-(2-(1-(benzylimino)ethyl)phenyl)benzamide I. N-(2-acetylphenyl)benzamide, 2 (0.96 g, 4.0 mmol), benzylamine (4.29 g, 40.0 mmol) and activated 4Å molecular sieves (2.0 g) were introduced in a Smith Process VialTM containing a small stirrer bar. The vial was sealed and heated to 393 K under a microwave reactor for 2 h. Volatile materials were removed under vacuum to give white solids. The desired product was isolated by repeated crystallization from hexane/CH2Cl2 to give white solids. Colourless crystals were obtained from the saturated Et2O solution. Yield: 1.10 g (88 %). 1H NMR (CDCl3, ppm): δ 13.81 (s, 1H, NH), 8.82 (d, J = 9.0 Hz, 2H, PhH), 7.64-7.71 (m, 3H, PhH), 7.43 (t, J = 7.2 Hz, 1H, PhH), 7.27-7.32 (m, 6H, PhH), 7.01-7.11 (m, 2H, PhH), 4.75 (s, 2H, PhCH2), 2.40 (s, 3H, CH3CN).

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93Å with Uiso(H) = 1.2 Ueq(C) for phenyl hydrogen; 0.96Å with Uiso(H) = 1.5 Ueq(C) for CH3 group; 0.97Å with Uiso(H) = 1.2 Ueq(C) for CH2 group; N–H = 0.86Å with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Intramolecular H-bond drawn by dashed line.
[Figure 2] Fig. 2. The synthetic procedure of the title compound I.
(E)-N-{2-[1-(Benzylimino)ethyl]phenyl}benzamide top
Crystal data top
C22H20N2OF(000) = 696
Mr = 328.40Dx = 1.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1657 reflections
a = 10.4213 (4) Åθ = 1.7–28.3°
b = 17.0799 (7) ŵ = 0.08 mm1
c = 10.8028 (5) ÅT = 296 K
β = 114.394 (2)°Block, colourless
V = 1751.18 (13) Å30.25 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4263 independent reflections
Radiation source: fine-focus sealed tube2414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.4°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2222
Tmin = 0.985, Tmax = 0.989l = 1411
20052 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.071P)2 + 0.1853P]
where P = (Fo2 + 2Fc2)/3
4263 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H20N2OV = 1751.18 (13) Å3
Mr = 328.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4213 (4) ŵ = 0.08 mm1
b = 17.0799 (7) ÅT = 296 K
c = 10.8028 (5) Å0.25 × 0.15 × 0.15 mm
β = 114.394 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4263 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2414 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.989Rint = 0.041
20052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
4263 reflectionsΔρmin = 0.17 e Å3
226 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81960 (13)0.10603 (8)0.23208 (15)0.0812 (4)
N10.34187 (14)0.01877 (8)0.15594 (15)0.0574 (4)
N20.60695 (13)0.06148 (8)0.21381 (14)0.0539 (4)
H2B0.51800.06490.16400.065*
C10.1425 (2)0.16265 (13)0.0401 (2)0.0861 (6)
H1A0.17310.16580.13390.103*
C20.0954 (3)0.22894 (14)0.0374 (3)0.1020 (8)
H2A0.09600.27650.00470.122*
C30.0482 (2)0.22600 (14)0.1736 (3)0.0894 (7)
H3A0.01470.27100.22550.107*
C40.0501 (2)0.15672 (16)0.2343 (2)0.0881 (7)
H4A0.01830.15430.32830.106*
C50.09905 (19)0.08970 (12)0.1574 (2)0.0710 (5)
H5A0.10060.04270.20030.085*
C60.14522 (16)0.09148 (10)0.01899 (19)0.0572 (4)
C70.19123 (18)0.01887 (11)0.0651 (2)0.0694 (5)
H7A0.13710.01350.11910.083*
H7B0.17080.02610.00510.083*
C80.2975 (2)0.09913 (11)0.2593 (2)0.0810 (6)
H8A0.20290.09240.19200.122*
H8B0.29810.09690.34840.122*
H8C0.33300.14900.24680.122*
C90.38926 (17)0.03509 (9)0.24489 (18)0.0539 (4)
C100.54103 (17)0.03557 (9)0.34125 (17)0.0528 (4)
C110.5834 (2)0.08470 (11)0.4543 (2)0.0687 (5)
H11A0.51590.11550.46640.082*
C120.7205 (2)0.08954 (13)0.5482 (2)0.0807 (6)
H12A0.74490.12310.62220.097*
C130.8209 (2)0.04467 (14)0.5322 (2)0.0804 (6)
H13A0.91410.04780.59540.096*
C140.78470 (19)0.00524 (11)0.4231 (2)0.0684 (5)
H14A0.85400.03590.41390.082*
C150.64589 (17)0.01073 (9)0.32591 (17)0.0519 (4)
C160.69092 (17)0.10573 (9)0.17378 (18)0.0551 (4)
C170.61755 (17)0.15684 (9)0.05235 (18)0.0524 (4)
C180.6931 (2)0.21764 (12)0.0312 (2)0.0797 (6)
H18A0.78630.22530.09210.096*
C190.6337 (3)0.26723 (13)0.0778 (3)0.0901 (7)
H19A0.68640.30820.08930.108*
C200.4985 (2)0.25675 (12)0.1688 (2)0.0795 (6)
H20A0.45840.29020.24280.095*
C210.4218 (2)0.19642 (14)0.1506 (2)0.0801 (6)
H21A0.32940.18860.21320.096*
C220.48016 (18)0.14713 (11)0.0403 (2)0.0674 (5)
H22A0.42620.10690.02840.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0496 (7)0.0893 (9)0.0919 (11)0.0078 (6)0.0164 (7)0.0193 (8)
N10.0473 (7)0.0614 (8)0.0613 (10)0.0001 (6)0.0202 (7)0.0087 (7)
N20.0451 (7)0.0590 (8)0.0526 (9)0.0016 (6)0.0151 (6)0.0037 (7)
C10.1098 (18)0.0804 (14)0.0623 (14)0.0046 (12)0.0295 (13)0.0019 (11)
C20.124 (2)0.0714 (14)0.107 (2)0.0156 (13)0.0447 (17)0.0016 (14)
C30.0634 (12)0.0809 (15)0.103 (2)0.0037 (10)0.0141 (13)0.0290 (14)
C40.0692 (13)0.1176 (19)0.0583 (14)0.0153 (12)0.0071 (10)0.0158 (14)
C50.0644 (11)0.0801 (13)0.0617 (14)0.0058 (9)0.0193 (10)0.0063 (10)
C60.0400 (8)0.0653 (10)0.0603 (12)0.0041 (7)0.0146 (8)0.0018 (8)
C70.0484 (10)0.0723 (11)0.0785 (14)0.0061 (8)0.0172 (9)0.0115 (10)
C80.0718 (12)0.0674 (11)0.1066 (18)0.0008 (9)0.0396 (12)0.0227 (12)
C90.0561 (10)0.0506 (9)0.0610 (11)0.0043 (7)0.0304 (9)0.0017 (8)
C100.0577 (10)0.0524 (9)0.0511 (11)0.0099 (7)0.0252 (8)0.0021 (8)
C110.0750 (12)0.0710 (12)0.0636 (13)0.0120 (9)0.0322 (11)0.0137 (10)
C120.0889 (15)0.0903 (14)0.0606 (14)0.0246 (12)0.0286 (12)0.0219 (11)
C130.0656 (12)0.1040 (16)0.0579 (13)0.0167 (11)0.0117 (10)0.0066 (12)
C140.0567 (11)0.0828 (12)0.0584 (12)0.0033 (9)0.0165 (9)0.0035 (10)
C150.0533 (9)0.0550 (9)0.0460 (10)0.0076 (7)0.0191 (8)0.0013 (7)
C160.0496 (9)0.0519 (9)0.0618 (11)0.0047 (7)0.0211 (8)0.0059 (8)
C170.0537 (9)0.0488 (8)0.0563 (11)0.0027 (7)0.0244 (8)0.0051 (8)
C180.0730 (13)0.0726 (12)0.0773 (15)0.0218 (10)0.0149 (11)0.0089 (11)
C190.0976 (17)0.0733 (13)0.0908 (17)0.0205 (12)0.0303 (14)0.0143 (12)
C200.0893 (15)0.0771 (13)0.0766 (15)0.0122 (11)0.0388 (13)0.0208 (11)
C210.0588 (11)0.1083 (16)0.0723 (15)0.0068 (11)0.0261 (11)0.0211 (12)
C220.0554 (10)0.0817 (12)0.0670 (13)0.0036 (9)0.0273 (10)0.0124 (10)
Geometric parameters (Å, º) top
O1—C161.2237 (19)C9—C101.492 (2)
N1—C91.273 (2)C10—C111.394 (2)
N1—C71.468 (2)C10—C151.413 (2)
N2—C161.355 (2)C11—C121.371 (3)
N2—C151.406 (2)C11—H11A0.9300
N2—H2B0.8600C12—C131.364 (3)
C1—C21.373 (3)C12—H12A0.9300
C1—C61.379 (3)C13—C141.375 (3)
C1—H1A0.9300C13—H13A0.9300
C2—C31.346 (3)C14—C151.396 (2)
C2—H2A0.9300C14—H14A0.9300
C3—C41.357 (3)C16—C171.496 (2)
C3—H3A0.9300C17—C221.377 (2)
C4—C51.382 (3)C17—C181.378 (2)
C4—H4A0.9300C18—C191.373 (3)
C5—C61.369 (3)C18—H18A0.9300
C5—H5A0.9300C19—C201.356 (3)
C6—C71.494 (2)C19—H19A0.9300
C7—H7A0.9700C20—C211.367 (3)
C7—H7B0.9700C20—H20A0.9300
C8—C91.503 (2)C21—C221.378 (3)
C8—H8A0.9600C21—H21A0.9300
C8—H8B0.9600C22—H22A0.9300
C8—H8C0.9600
C9—N1—C7118.67 (14)C11—C10—C9118.39 (15)
C16—N2—C15128.61 (14)C15—C10—C9124.30 (15)
C16—N2—H2B115.7C12—C11—C10122.73 (18)
C15—N2—H2B115.7C12—C11—H11A118.6
C2—C1—C6121.0 (2)C10—C11—H11A118.6
C2—C1—H1A119.5C13—C12—C11119.44 (19)
C6—C1—H1A119.5C13—C12—H12A120.3
C3—C2—C1120.9 (2)C11—C12—H12A120.3
C3—C2—H2A119.6C12—C13—C14120.24 (19)
C1—C2—H2A119.6C12—C13—H13A119.9
C2—C3—C4119.3 (2)C14—C13—H13A119.9
C2—C3—H3A120.3C13—C14—C15121.23 (18)
C4—C3—H3A120.3C13—C14—H14A119.4
C3—C4—C5120.4 (2)C15—C14—H14A119.4
C3—C4—H4A119.8C14—C15—N2122.02 (15)
C5—C4—H4A119.8C14—C15—C10119.03 (16)
C6—C5—C4121.0 (2)N2—C15—C10118.95 (14)
C6—C5—H5A119.5O1—C16—N2123.57 (16)
C4—C5—H5A119.5O1—C16—C17120.22 (15)
C5—C6—C1117.39 (18)N2—C16—C17116.21 (14)
C5—C6—C7121.67 (18)C22—C17—C18117.66 (17)
C1—C6—C7120.88 (19)C22—C17—C16124.64 (15)
N1—C7—C6113.17 (14)C18—C17—C16117.69 (16)
N1—C7—H7A108.9C19—C18—C17121.37 (19)
C6—C7—H7A108.9C19—C18—H18A119.3
N1—C7—H7B108.9C17—C18—H18A119.3
C6—C7—H7B108.9C20—C19—C18120.40 (19)
H7A—C7—H7B107.8C20—C19—H19A119.8
C9—C8—H8A109.5C18—C19—H19A119.8
C9—C8—H8B109.5C19—C20—C21119.3 (2)
H8A—C8—H8B109.5C19—C20—H20A120.4
C9—C8—H8C109.5C21—C20—H20A120.4
H8A—C8—H8C109.5C20—C21—C22120.6 (2)
H8B—C8—H8C109.5C20—C21—H21A119.7
N1—C9—C10119.97 (14)C22—C21—H21A119.7
N1—C9—C8122.63 (16)C17—C22—C21120.66 (17)
C10—C9—C8117.40 (15)C17—C22—H22A119.7
C11—C10—C15117.31 (16)C21—C22—H22A119.7
C6—C1—C2—C31.1 (4)C13—C14—C15—N2179.93 (17)
C1—C2—C3—C41.3 (4)C13—C14—C15—C100.5 (3)
C2—C3—C4—C50.4 (3)C16—N2—C15—C146.6 (3)
C3—C4—C5—C60.6 (3)C16—N2—C15—C10174.05 (15)
C4—C5—C6—C10.8 (3)C11—C10—C15—C140.1 (2)
C4—C5—C6—C7176.70 (17)C9—C10—C15—C14179.92 (15)
C2—C1—C6—C50.1 (3)C11—C10—C15—N2179.47 (14)
C2—C1—C6—C7177.6 (2)C9—C10—C15—N20.5 (2)
C9—N1—C7—C6170.89 (16)C15—N2—C16—O11.6 (3)
C5—C6—C7—N1114.16 (19)C15—N2—C16—C17177.54 (14)
C1—C6—C7—N168.4 (2)O1—C16—C17—C22162.53 (18)
C7—N1—C9—C10178.33 (15)N2—C16—C17—C2218.3 (2)
C7—N1—C9—C80.8 (3)O1—C16—C17—C1817.0 (3)
N1—C9—C10—C11166.75 (16)N2—C16—C17—C18162.18 (17)
C8—C9—C10—C1112.5 (2)C22—C17—C18—C190.4 (3)
N1—C9—C10—C1513.2 (2)C16—C17—C18—C19179.96 (19)
C8—C9—C10—C15167.56 (16)C17—C18—C19—C200.8 (4)
C15—C10—C11—C120.3 (3)C18—C19—C20—C210.2 (4)
C9—C10—C11—C12179.70 (17)C19—C20—C21—C220.7 (3)
C10—C11—C12—C130.2 (3)C18—C17—C22—C210.6 (3)
C11—C12—C13—C140.3 (3)C16—C17—C22—C21178.98 (17)
C12—C13—C14—C150.7 (3)C20—C21—C22—C171.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.861.972.670 (2)138

Experimental details

Crystal data
Chemical formulaC22H20N2O
Mr328.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.4213 (4), 17.0799 (7), 10.8028 (5)
β (°) 114.394 (2)
V3)1751.18 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.985, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
20052, 4263, 2414
Rint0.041
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.161, 1.03
No. of reflections4263
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.861.9662.670 (2)138
 

Acknowledgements

We gratefully acknowledge the financial support in part from the National Science Council, Taiwan (NSC97-2113-M-033-005-MY2) and in part from the project of the specific research fields in the Chung Yuan Christian University, Taiwan (No. CYCU-98-CR-CH).

References

First citationBruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229–3238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChisholm, M. H., Gallucci, J. & Phomphrai, K. (2002). Inorg. Chem. 41, 2785–2794.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGao, W., Cui, D., Liu, X., Zhang, Y. & Mu, Y. (2008). Organometallics, 27, 5889–5893.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C., Lin, C.-H., Chen, H.-L. & Ko, B.-T. (2009). Acta Cryst. E65, o2791.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, Y.-H., Lin, C.-H., Lin, C.-C. & Ko, B.-T. (2009). J. Polym. Sci. Part. A Polym. Chem. 47, 4927–4936.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds