metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R)-2-Methyl­piperazinediium tetra­chloridocuprate(II)

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 21 January 2010; accepted 2 March 2010; online 6 March 2010)

In the title compound, (C5H14N2)[CuCl4], the copper(II) ion has a slightly tetra­hedrally distorted square-planar coordin­ation geometry and the diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by inter­molecular N—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For the ferroelectric and non-linear optical properties of chiral organic ligands, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Qu et al. (2003[Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710-7712.]). For transition metal complexes of 2-methyl­piperazine, see: Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[CuCl4]

  • Mr = 307.53

  • Orthorhombic, P 21 21 21

  • a = 6.0169 (12) Å

  • b = 12.985 (3) Å

  • c = 14.644 (3) Å

  • V = 1144.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.87, Tmax = 0.90

  • 11992 measured reflections

  • 2627 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.10

  • 2627 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1091 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 2.36 3.149 (6) 147
N1—H1B⋯Cl1ii 0.90 2.31 3.182 (6) 163
N2—H2A⋯Cl4iii 0.90 2.33 3.218 (6) 168
N2—H2B⋯Cl4iv 0.90 2.39 3.192 (6) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (R)-2-methylpiperazine has a chiral centre which have shown tremendous scope in the synthesis of transition metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound

The asymmetric unit of the title compound consists of a diprotonated (R)-2-methylpiperazine cation and a tetrachlorocuprate anion (Fig. 1). The copper(II) metal centre is in a slightly tetrahedrally distorted square-planar coordination geometry (maximum displacement 0.0252 (18) Å for atom Cl1). The 6-membered piperazine ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.570 (6) Å, θ = 178.6 (6)° and ϕ = -127.3 (3)°. The crystal structure is stabilized by inter-ion N—H···Cl hydrogen interactions (Table 1) forming a three-dimensional network (Fig. 2).

Related literature top

For the ferroelectric and non-linear optical properties of chiral organic ligands, see: Fu et al. (2007); Qu et al. (2003). For transition metal complexes of 2-methylpiperazine, see: Ye et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of (R)-2-methylpiperazine (1 mmol, 0.1 g ), CuCl2 (1 mmol, 0.136 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 30 ml water by heating to 353 K (10 minute) forming a clear solution. The reaction mixture was then cooled slowly to room temperature. Single crystals of the title compound suitable for X-ray analysis were formed after 12 days on slow evaporation of the solvent.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93-0.98 Å, N—H = 0.90 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram viewed approximately along the a axis. Hydrogen bonds are drawn as dashed lines.
(2R)-2-Methylpiperazinediium tetrachloridocuprate(II) top
Crystal data top
(C5H14N2)[CuCl4]F(000) = 620
Mr = 307.53Dx = 1.785 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2469 reflections
a = 6.0169 (12) Åθ = 3.1–27.5°
b = 12.985 (3) ŵ = 2.80 mm1
c = 14.644 (3) ÅT = 293 K
V = 1144.1 (4) Å3Block, yellow
Z = 40.30 × 0.25 × 0.22 mm
Data collection top
Rigaku SCXmini
diffractometer
2627 independent reflections
Radiation source: fine-focus sealed tube2469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.87, Tmax = 0.90l = 1818
11992 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.0175P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.30 e Å3
2627 reflectionsΔρmin = 0.53 e Å3
111 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.193 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1091 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (3)
Crystal data top
(C5H14N2)[CuCl4]V = 1144.1 (4) Å3
Mr = 307.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0169 (12) ŵ = 2.80 mm1
b = 12.985 (3) ÅT = 293 K
c = 14.644 (3) Å0.30 × 0.25 × 0.22 mm
Data collection top
Rigaku SCXmini
diffractometer
2627 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2469 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.90Rint = 0.051
11992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.30 e Å3
S = 1.10Δρmin = 0.53 e Å3
2627 reflectionsAbsolute structure: Flack (1983), 1091 Friedel pairs
111 parametersAbsolute structure parameter: 0.00 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.82482 (13)1.34903 (5)0.01022 (5)0.0237 (3)
Cl40.8203 (3)1.32659 (11)0.17172 (9)0.0251 (4)
Cl30.8247 (3)1.17476 (11)0.00811 (9)0.0256 (4)
Cl20.8317 (3)1.52141 (11)0.02454 (12)0.0365 (4)
Cl10.8196 (3)1.36387 (11)0.14937 (10)0.0250 (4)
N10.8224 (9)1.0679 (4)0.1788 (3)0.0289 (11)
H1A0.93381.10630.15590.035*
H1B0.69321.09760.16260.035*
N20.6773 (9)0.8919 (4)0.2799 (3)0.0263 (11)
H2A0.80890.86380.29510.032*
H2B0.56920.85230.30380.032*
C50.6696 (17)0.7855 (5)0.1398 (5)0.055 (2)
H5C0.57020.74100.17250.083*
H5B0.81900.76030.14580.083*
H5A0.62880.78670.07640.083*
C20.6553 (12)0.8933 (5)0.1786 (4)0.0300 (14)
H2C0.50970.92210.16300.036*
C40.8395 (11)1.0661 (5)0.2797 (4)0.0309 (14)
H4B0.82271.13540.30350.037*
H4A0.98501.04080.29750.037*
C30.6623 (12)0.9975 (5)0.3195 (4)0.0304 (13)
H3B0.68010.99390.38530.036*
H3A0.51701.02640.30670.036*
C10.8335 (12)0.9624 (5)0.1390 (4)0.0323 (14)
H1D0.97860.93290.15120.039*
H1C0.81500.96660.07330.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0339 (4)0.0198 (4)0.0174 (4)0.0001 (3)0.0003 (3)0.0000 (3)
Cl40.0236 (7)0.0309 (8)0.0209 (7)0.0006 (7)0.0001 (7)0.0035 (6)
Cl30.0392 (8)0.0197 (7)0.0178 (7)0.0004 (7)0.0001 (7)0.0001 (5)
Cl20.0540 (10)0.0222 (8)0.0333 (9)0.0006 (8)0.0017 (10)0.0016 (6)
Cl10.0238 (7)0.0308 (8)0.0205 (7)0.0010 (7)0.0001 (7)0.0047 (6)
N10.025 (2)0.034 (3)0.028 (3)0.004 (3)0.000 (3)0.013 (2)
N20.026 (2)0.028 (3)0.024 (3)0.004 (3)0.002 (3)0.011 (2)
C50.090 (6)0.035 (4)0.041 (5)0.005 (5)0.005 (6)0.000 (3)
C20.033 (3)0.031 (3)0.026 (3)0.001 (3)0.003 (3)0.007 (3)
C40.037 (3)0.031 (3)0.025 (3)0.004 (3)0.003 (3)0.009 (3)
C30.037 (3)0.032 (3)0.023 (3)0.001 (3)0.005 (3)0.006 (3)
C10.037 (3)0.039 (4)0.022 (3)0.000 (3)0.005 (3)0.007 (3)
Geometric parameters (Å, º) top
Cu1—Cl22.2485 (16)C5—H5C0.9600
Cu1—Cl32.2788 (16)C5—H5B0.9600
Cu1—Cl12.3451 (15)C5—H5A0.9600
Cu1—Cl42.3831 (15)C2—C11.514 (9)
N1—C41.482 (8)C2—H2C0.9800
N1—C11.490 (8)C4—C31.506 (9)
N1—H1A0.9000C4—H4B0.9700
N1—H1B0.9000C4—H4A0.9700
N2—C21.489 (8)C3—H3B0.9700
N2—C31.492 (7)C3—H3A0.9700
N2—H2A0.9000C1—H1D0.9700
N2—H2B0.9000C1—H1C0.9700
C5—C21.513 (9)
Cl2—Cu1—Cl3178.25 (7)N2—C2—C5111.0 (5)
Cl2—Cu1—Cl190.66 (6)N2—C2—C1109.0 (5)
Cl3—Cu1—Cl187.95 (5)C5—C2—C1111.4 (6)
Cl2—Cu1—Cl491.68 (6)N2—C2—H2C108.5
Cl3—Cu1—Cl489.74 (5)C5—C2—H2C108.5
Cl1—Cu1—Cl4177.28 (6)C1—C2—H2C108.5
C4—N1—C1111.9 (4)N1—C4—C3110.3 (6)
C4—N1—H1A109.2N1—C4—H4B109.6
C1—N1—H1A109.2C3—C4—H4B109.6
C4—N1—H1B109.2N1—C4—H4A109.6
C1—N1—H1B109.2C3—C4—H4A109.6
H1A—N1—H1B107.9H4B—C4—H4A108.1
C2—N2—C3111.8 (4)N2—C3—C4110.5 (5)
C2—N2—H2A109.3N2—C3—H3B109.6
C3—N2—H2A109.3C4—C3—H3B109.6
C2—N2—H2B109.3N2—C3—H3A109.6
C3—N2—H2B109.3C4—C3—H3A109.6
H2A—N2—H2B107.9H3B—C3—H3A108.1
C2—C5—H5C109.5N1—C1—C2111.3 (5)
C2—C5—H5B109.5N1—C1—H1D109.4
H5C—C5—H5B109.5C2—C1—H1D109.4
C2—C5—H5A109.5N1—C1—H1C109.4
H5C—C5—H5A109.5C2—C1—H1C109.4
H5B—C5—H5A109.5H1D—C1—H1C108.0
C3—N2—C2—C5179.7 (7)N1—C4—C3—N256.1 (7)
C3—N2—C2—C157.3 (7)C4—N1—C1—C256.4 (7)
C1—N1—C4—C355.8 (7)N2—C2—C1—N156.0 (7)
C2—N2—C3—C458.1 (7)C5—C2—C1—N1178.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.363.149 (6)147
N1—H1B···Cl1ii0.902.313.182 (6)163
N2—H2A···Cl4iii0.902.333.218 (6)168
N2—H2B···Cl4iv0.902.393.192 (6)148
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x1/2, y+5/2, z; (iii) x+2, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C5H14N2)[CuCl4]
Mr307.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.0169 (12), 12.985 (3), 14.644 (3)
V3)1144.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.87, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
11992, 2627, 2469
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.10
No. of reflections2627
No. of parameters111
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.53
Absolute structureFlack (1983), 1091 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.363.149 (6)147.1
N1—H1B···Cl1ii0.902.313.182 (6)162.9
N2—H2A···Cl4iii0.902.333.218 (6)167.6
N2—H2B···Cl4iv0.902.393.192 (6)147.7
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x1/2, y+5/2, z; (iii) x+2, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710–7712.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds