metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m394-m395

Di­aqua­bis­(5-bromo-2-hy­droxy­benzoato)bis­­(N-methyl­nicotinamide)zinc(II)

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: zuzana.bujdosova@upjs.sk

(Received 26 February 2010; accepted 8 March 2010; online 13 March 2010)

The title mononuclear complex mol­ecule, [Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2], has a crystallographically imposed centre of symmetry. The zinc(II) atom is coordinated by two N atoms from two N-methyl­nicotinamide ligands, two O atoms from two 5-bromo­salicylate anions and two aqua O atoms in a slightly distorted octa­hedral geometry. Intra­molecular O—H⋯O hydrogen-bonding inter­actions are present. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, forming a two-dimensional network perpendicular to [100].

Related literature

For general background to the properties of carboxylic acid–metal complexes, see: Nagar (1990[Nagar, R. (1990). J. Inorg. Biochem. 40, 349-356.]); Cavagiolio et al. (2000[Cavagiolio, G., Benedetto, L., Boccaleri, E., Colangelo, D., Viano, I. & Osella, D. (2000). Inorg. Chim. Acta, 305, 61-68.]). For the synthesis and properties of zinc(II) carboxyl­ates reported by our group, see: Györyová et al. (2005[Györyová, K., Chomič, J. & Kovářová, J. (2005). J. Therm. Anal. Calorim. 80, 375-380.], 2006[Györyová, K., Chomič, J., Szunyogová, E., Piknová, L., Zeleňák, V. & Vargová, Z. (2006). J. Therm. Anal. Calorim. 84, 727-732.]); Bujdošová et al. (2009[Bujdošová, Z., Györyová, K., Kovářová, J., Hudecová, D. & Halás, L. (2009). J. Therm. Anal. Calorim. 98, 151-159.]); Gebicki et al. (2003[Gebicki, J., Sysa-Jedrzejowska, A. & Adamus, J. (2003). Pol. J. Pharmacol. 55, 109-112.]). For related structures, see: Necefoglu et al. (2001a[Necefoglu, H., Clegg, W. & Scott, A. J. (2001a). Acta Cryst. E57, m462-m464.],b[Necefoglu, H., Clegg, W. & Scott, A. J. (2001b). Acta Cryst. E57, m465-m466.]); Hökelek et al. (2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m607-m608.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481-m482.]); Öztürk et al. (2008[Öztürk, A., Hökelek, T., Özbek, F. E. & Necefoğlu, H. (2008). Acta Cryst. E64, m1218-m1219.]); Sarı et al. (2007[Sarı, M., Gökçe, G., Gökçe, S., Şahin, E. & Necefoğlu, H. (2007). Acta Cryst. E63, m2191.]); Liu et al. (2004[Liu, Z.-D., Qu, Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, o1310-o1311.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2]

  • Mr = 805.73

  • Triclinic, [P \overline 1]

  • a = 8.1600 (2) Å

  • b = 10.1122 (3) Å

  • c = 10.4291 (3) Å

  • α = 66.800 (3)°

  • β = 74.334 (2)°

  • γ = 80.743 (2)°

  • V = 760.15 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.50 mm−1

  • T = 290 K

  • 0.57 × 0.30 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: numerical [Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) in CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])] Tmin = 0.289, Tmax = 0.484

  • 32240 measured reflections

  • 3153 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.064

  • S = 1.15

  • 3153 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2 0.82 1.81 2.540 (2) 147
N2—H1N2⋯O3i 0.86 2.55 3.1109 (19) 123
O5—H2O5⋯O2ii 0.82 1.88 2.6694 (18) 162
O5—H1O5⋯O4iii 0.82 1.94 2.7568 (13) 179
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2007[Crystal Impact (2007). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The complexes of carboxylic acids with metals, e.g. zinc, are interesting due to different coordination modes of a carboxylate group bound to a metal ion. It is well documented that heterocyclic compounds, especially N-donor ligand systems, play a significant role in many biological systems, being a component of several vitamins and drugs (Nagar, 1990; Cavagiolio et al., 2000). As a part of our ongoing studies of zinc(II) carboxylates (Györyová et al., 2005; Györyová et al., 2006; Bujdošová et al., 2009) we have been exploring the synthesis and crystal structure of zinc(II) 5-bromosalicylate containing N-methylnicotinamide, shown at in vitro study to be a potent anti-inflammatory agent (Gebicki et al., 2003).

In the title monomeric complex [Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2] (Fig. 1), the zinc(II) atom, which lies on an inversion centre, exhibits a slightly distorted octahedral coordination geometry. The coordination sphere consists of three pairs of trans-arranged monodentate ligands. The two N-methylnicotinamide ligands are coordinated to the zinc atom through nitrogen atoms of the pyridine rings. The 5-bromosalicylate anion is coordinated through one oxygen atom of the carboxylate group. The similar distances O1—C1 (1.256 (2) Å) and O2—C1 (1.262 (2) Å) in the carboxylate group indicate a delocalized bonding arrangement and may be compared with the corresponding distances found in [Zn(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Sarı et al., 2007). The plane of the carboxylate group is approximately coplanar with the plane of the benzene ring; the dihedral angle between these planes is 5.5 (3)°. Such behaviour is not unusual; a similar arrangement was observed in other compounds (e.g. diaquabis(N,N-diethylnicotinamide-N)bis(4-fluorobenzoato-O)zinc(II) (Hökelek et al., 2007)). All other geometric parameters of the coordinated anion are similar to that found in free 5-bromosalicylic acid (Liu et al., 2004). The distorted octahedral coordination is completed by two pyridine nitrogen atoms of two N-methylnicotinamide ligands in the axial positions. The Zn—N distance (2.1583 (9) Å) is in good agreement with the values reported for other octahedrally coordinated zinc(II) complexes [viz., Diaquabis(4-chlorobenzoato)bis(N,N-diethylnicotinamide)zinc(II), Zn—N: 2.157 (3) Å; Sarı et al., 2007]. The coordination environment of the zinc(II) atom is completed by water molecules, forming with carboxylate oxygen atoms the basal plane of the distorted octahedron. The Zn—O distance (2.1396 (8) Å) is comparable with those found in similar compounds [viz. diaquabis(2-bromobenzoato)bis(N,N-diethylnicotinamide)zinc(II), Zn—O: 2.1269 (12) Å; Hökelek et al., 2009b]. Intramolecular hydrogen bonding interactions involving the hydroxyl groups and carboxylate oxygen atoms (O3—H1O3···O2) and the equatorially coordinated water molecule and carboxylate oxygen atom (O5—H2O5···O2) stabilize the molecular structure (Fig. 2). Intramolecular hydrogen bonds also influences the orientation and delocalized character of carboxylate group. The molecules of the title compound are linked into a two-dimensional network perpendicular to [100] by intermolecular O5—H1O5···O4 and N2—H1N2···O3 hydrogen bonds (Fig. 3).

Related literature top

For general background to the properties of carboxylic acid–metal complexes, see: Nagar (1990); Cavagiolio et al. (2000). For the synthesis and properties of zinc(II) carboxylates reported by our group, see: Györyová et al. (2005, 2006); Bujdošová et al. (2009); Gebicki et al. (2003). For related structures, see: Necefoglu et al. (2001a,b); Hökelek et al. (2007, 2009a,b); Öztürk et al. (2008); Sarı et al. (2007); Liu et al. (2004).

Experimental top

Analytical reagent grade chemicals were used for the preparation of the title compound. The synthesis was carried out by reaction of aqueous solutions (20 ml) of ZnCl2 (0.14 g, 1 mmol) and NaHCO3 (0.17 g, 2 mmol). After complete removal of chloride anions, an acetone solution (10 ml) of 5-bromosalicylic acid (0.44 g, 2 mmol) was added. The resulting solution of (5-BrC6H3-2-(OH)COO)2Zn (0.50 g, 1 mmol) was mixed with an aqueous solution (10 ml) of N-methylnicotinamide (0.27 g, 2 mmol). The reaction mixture was stirred for 2 h and left aside for crystallization at room temperature. After two days, a small amount of colourless bright crystals appeared. The resulting crystals were isolated by filtration.

Refinement top

The hydrogen atoms of the water molecule were located in difference Fourier map and refined with the O—H distances constrained to 0.82 Å and with Uiso(H) = 1.5Ueq(O). The H atom bound to N2 was located in a difference Fourier map and refined Uiso(H) = 1.2Ueq(N). All other H atoms were positioned geometrically and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1-x, -y, -z.
[Figure 2] Fig. 2. View of the intramolecular hydrogen bonds (dashed lines) of the title compound. Hydrogen atoms of aromatic rings and methyl groups are omitted for clarity.
[Figure 3] Fig. 3. View of the intermolecular hydrogen bonds (dashed lines) of the title compound. Hydrogen atoms of aromatic rings and methyl groups are omitted for clarity. Symmetry codes: (i) x, -1+y, z; (ii) x, y, 1+z
Diaquabis(5-bromo-2-hydroxybenzoato)bis(N-methylnicotinamide)zinc(II) top
Crystal data top
[Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2]Z = 1
Mr = 805.73F(000) = 404
Triclinic, P1Dx = 1.760 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1600 (2) ÅCell parameters from 19248 reflections
b = 10.1122 (3) Åθ = 3.0–29.6°
c = 10.4291 (3) ŵ = 3.50 mm1
α = 66.800 (3)°T = 290 K
β = 74.334 (2)°Prism, colourless
γ = 80.743 (2)°0.57 × 0.30 × 0.26 mm
V = 760.15 (4) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3153 independent reflections
Radiation source: Enhance (Mo) X-ray Source2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3438 pixels mm-1θmax = 26.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: numerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
k = 1212
Tmin = 0.289, Tmax = 0.484l = 1313
32240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0404P)2]
where P = (Fo2 + 2Fc2)/3
3153 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2]γ = 80.743 (2)°
Mr = 805.73V = 760.15 (4) Å3
Triclinic, P1Z = 1
a = 8.1600 (2) ÅMo Kα radiation
b = 10.1122 (3) ŵ = 3.50 mm1
c = 10.4291 (3) ÅT = 290 K
α = 66.800 (3)°0.57 × 0.30 × 0.26 mm
β = 74.334 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3153 independent reflections
Absorption correction: numerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
2686 reflections with I > 2σ(I)
Tmin = 0.289, Tmax = 0.484Rint = 0.024
32240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.15Δρmax = 0.50 e Å3
3153 reflectionsΔρmin = 0.49 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.00000.02312 (9)
O10.67676 (14)0.02707 (13)0.17587 (12)0.0305 (3)
O20.5864 (2)0.14251 (15)0.36177 (15)0.0493 (4)
O30.6562 (2)0.11216 (16)0.60156 (15)0.0550 (4)
H1O30.60750.14660.54090.083*
C10.6699 (2)0.02704 (19)0.30545 (19)0.0299 (4)
C20.7659 (2)0.05359 (18)0.40050 (18)0.0270 (4)
C30.7497 (2)0.00760 (19)0.54230 (19)0.0348 (4)
C40.8343 (3)0.0873 (2)0.6265 (2)0.0425 (5)
H40.82330.05740.72040.051*
C50.9340 (3)0.2099 (2)0.5713 (2)0.0403 (5)
H50.98990.26290.62760.048*
C60.9505 (2)0.25379 (19)0.43114 (19)0.0319 (4)
C70.8667 (2)0.17721 (18)0.34631 (18)0.0295 (4)
H70.87770.20850.25220.035*
Br11.08861 (3)0.42202 (2)0.35493 (2)0.05222 (9)
N10.66055 (11)0.14385 (9)0.01039 (9)0.0245 (3)
N20.48397 (11)0.41145 (9)0.24800 (9)0.0384 (4)
H1N20.45600.32370.28760.046*
C80.82847 (11)0.13682 (9)0.04349 (9)0.0302 (4)
H80.87410.06820.08430.036*
C90.9368 (2)0.2262 (2)0.0414 (2)0.0373 (4)
H91.05330.21780.07940.045*
C100.8694 (2)0.32926 (19)0.0186 (2)0.0352 (4)
H100.93990.39190.02050.042*
C110.6960 (2)0.33753 (16)0.07550 (17)0.0250 (3)
C120.5966 (2)0.24263 (16)0.06900 (17)0.0241 (3)
H120.47990.24790.10720.029*
C130.6211 (2)0.44766 (17)0.14122 (19)0.0282 (4)
C140.39754 (10)0.50534 (8)0.32554 (9)0.0531 (6)
H14C0.28900.46920.38280.080*
H14A0.38090.60110.25830.080*
H14B0.46600.50740.38640.080*
O40.68500 (13)0.56491 (9)0.09551 (11)0.0373 (3)
O50.63493 (12)0.17592 (8)0.13428 (10)0.0300 (3)
H2O50.57600.18340.21380.045*
H1O50.65090.25310.12290.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02369 (15)0.02253 (14)0.02842 (16)0.00151 (10)0.00284 (11)0.01690 (11)
O10.0301 (6)0.0377 (7)0.0285 (7)0.0004 (5)0.0009 (5)0.0214 (6)
O20.0659 (10)0.0349 (7)0.0386 (8)0.0174 (7)0.0051 (7)0.0168 (6)
O30.0737 (11)0.0479 (9)0.0376 (9)0.0209 (8)0.0187 (8)0.0152 (7)
C10.0294 (9)0.0296 (9)0.0322 (10)0.0047 (7)0.0013 (7)0.0175 (8)
C20.0290 (9)0.0285 (9)0.0242 (9)0.0033 (7)0.0008 (7)0.0143 (7)
C30.0416 (11)0.0330 (10)0.0272 (9)0.0004 (8)0.0060 (8)0.0102 (8)
C40.0580 (13)0.0465 (12)0.0239 (10)0.0003 (10)0.0069 (9)0.0170 (9)
C50.0489 (12)0.0433 (11)0.0322 (10)0.0008 (9)0.0002 (9)0.0246 (9)
C60.0315 (10)0.0310 (9)0.0344 (10)0.0009 (7)0.0031 (8)0.0172 (8)
C70.0321 (9)0.0342 (9)0.0247 (9)0.0028 (7)0.0033 (7)0.0152 (7)
Br10.05614 (16)0.04580 (14)0.05557 (16)0.01938 (10)0.01506 (11)0.02663 (11)
N10.0260 (7)0.0214 (7)0.0303 (8)0.0008 (5)0.0066 (6)0.0140 (6)
N20.0486 (10)0.0283 (8)0.0416 (10)0.0049 (7)0.0014 (8)0.0213 (7)
C80.0287 (9)0.0277 (9)0.0376 (10)0.0011 (7)0.0036 (7)0.0192 (8)
C90.0248 (9)0.0371 (10)0.0539 (12)0.0040 (8)0.0013 (8)0.0249 (9)
C100.0346 (10)0.0300 (9)0.0462 (11)0.0087 (7)0.0085 (8)0.0173 (8)
C110.0327 (9)0.0181 (8)0.0272 (9)0.0012 (6)0.0100 (7)0.0097 (7)
C120.0262 (8)0.0215 (8)0.0273 (9)0.0006 (6)0.0069 (7)0.0122 (7)
C130.0331 (9)0.0229 (8)0.0359 (10)0.0034 (7)0.0163 (7)0.0151 (7)
C140.0612 (15)0.0488 (13)0.0547 (14)0.0050 (11)0.0057 (11)0.0365 (11)
O40.0450 (8)0.0217 (6)0.0504 (8)0.0032 (5)0.0097 (6)0.0191 (6)
O50.0316 (7)0.0239 (6)0.0381 (7)0.0014 (5)0.0059 (5)0.0175 (5)
Geometric parameters (Å, º) top
Zn1—O1i2.0879 (11)N1—C81.3352 (13)
Zn1—O12.0879 (11)N1—C121.3359 (17)
Zn1—O52.1396 (9)N2—C131.328 (2)
Zn1—O5i2.1396 (9)N2—C141.4609 (13)
Zn1—N1i2.1583 (9)N2—H1N20.8578
Zn1—N12.1583 (9)C8—C91.372 (2)
O1—C11.256 (2)C8—H80.9300
O2—C11.262 (2)C9—C101.387 (2)
O3—C31.341 (2)C9—H90.9300
O3—H1O30.8200C10—C111.382 (2)
C1—C21.508 (2)C10—H100.9300
C2—C71.386 (2)C11—C121.384 (2)
C2—C31.402 (3)C11—C131.497 (2)
C3—C41.396 (2)C12—H120.9300
C4—C51.377 (3)C13—O41.235 (2)
C4—H40.9300C14—H14C0.9600
C5—C61.389 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.376 (2)O5—H2O50.8196
C6—Br11.8968 (18)O5—H1O50.8197
C7—H70.9300
O1i—Zn1—O1180.00 (8)C6—C7—H7119.9
O1i—Zn1—O592.30 (4)C2—C7—H7119.9
O1—Zn1—O587.70 (4)C8—N1—C12117.96 (11)
O1i—Zn1—O5i87.70 (4)C8—N1—Zn1120.28 (7)
O1—Zn1—O5i92.30 (4)C12—N1—Zn1121.77 (9)
O5—Zn1—O5i180.00 (10)C13—N2—C14122.98 (11)
O1i—Zn1—N1i91.23 (4)C13—N2—H1N2120.1
O1—Zn1—N1i88.77 (4)C14—N2—H1N2115.5
O5—Zn1—N1i91.78 (3)N1—C8—C9122.98 (11)
O5i—Zn1—N1i88.22 (3)N1—C8—H8118.5
O1i—Zn1—N188.77 (4)C9—C8—H8118.5
O1—Zn1—N191.23 (4)C8—C9—C10118.76 (15)
O5—Zn1—N188.22 (4)C8—C9—H9120.6
O5i—Zn1—N191.78 (3)C10—C9—H9120.6
N1i—Zn1—N1180.00 (4)C11—C10—C9118.99 (16)
C1—O1—Zn1128.42 (11)C11—C10—H10120.5
C3—O3—H1O3109.5C9—C10—H10120.5
O1—C1—O2125.03 (16)C10—C11—C12118.22 (15)
O1—C1—C2117.54 (15)C10—C11—C13119.77 (15)
O2—C1—C2117.42 (16)C12—C11—C13122.01 (15)
C7—C2—C3119.42 (15)N1—C12—C11123.07 (14)
C7—C2—C1119.96 (15)N1—C12—H12118.5
C3—C2—C1120.57 (16)C11—C12—H12118.5
O3—C3—C4118.17 (17)O4—C13—N2123.41 (16)
O3—C3—C2122.26 (16)O4—C13—C11120.51 (15)
C4—C3—C2119.57 (17)N2—C13—C11116.08 (15)
C5—C4—C3120.41 (18)N2—C14—H14C109.5
C5—C4—H4119.8N2—C14—H14A109.5
C3—C4—H4119.8H14C—C14—H14A109.5
C4—C5—C6119.57 (17)N2—C14—H14B109.5
C4—C5—H5120.2H14C—C14—H14B109.5
C6—C5—H5120.2H14A—C14—H14B109.5
C7—C6—C5120.74 (17)Zn1—O5—H2O5100.9
C7—C6—Br1119.51 (14)Zn1—O5—H1O5119.2
C5—C6—Br1119.74 (14)H2O5—O5—H1O5111.8
C6—C7—C2120.28 (16)
O5—Zn1—O1—C1167.76 (16)O1—Zn1—N1—C824.26 (8)
O5i—Zn1—O1—C112.24 (16)O5—Zn1—N1—C863.39 (8)
N1i—Zn1—O1—C175.93 (14)O5i—Zn1—N1—C8116.61 (8)
N1—Zn1—O1—C1104.07 (14)O1i—Zn1—N1—C1224.81 (11)
Zn1—O1—C1—O224.7 (3)O1—Zn1—N1—C12155.19 (11)
Zn1—O1—C1—C2153.98 (11)O5—Zn1—N1—C12117.16 (10)
O1—C1—C2—C74.4 (2)O5i—Zn1—N1—C1262.84 (10)
O2—C1—C2—C7176.77 (16)C12—N1—C8—C90.15 (17)
O1—C1—C2—C3173.34 (16)Zn1—N1—C8—C9179.32 (11)
O2—C1—C2—C35.5 (3)N1—C8—C9—C100.4 (2)
C7—C2—C3—O3178.98 (17)C8—C9—C10—C110.7 (3)
C1—C2—C3—O33.3 (3)C9—C10—C11—C120.5 (3)
C7—C2—C3—C40.4 (3)C9—C10—C11—C13179.74 (17)
C1—C2—C3—C4177.40 (16)C8—N1—C12—C110.3 (2)
O3—C3—C4—C5179.01 (19)Zn1—N1—C12—C11179.13 (12)
C2—C3—C4—C50.4 (3)C10—C11—C12—N10.0 (2)
C3—C4—C5—C60.2 (3)C13—C11—C12—N1179.73 (14)
C4—C5—C6—C70.8 (3)C14—N2—C13—O42.0 (2)
C4—C5—C6—Br1179.66 (15)C14—N2—C13—C11178.73 (11)
C5—C6—C7—C20.8 (3)C10—C11—C13—O431.6 (2)
Br1—C6—C7—C2179.66 (13)C12—C11—C13—O4148.18 (17)
C3—C2—C7—C60.2 (3)C10—C11—C13—N2149.10 (16)
C1—C2—C7—C6178.00 (16)C12—C11—C13—N231.1 (2)
O1i—Zn1—N1—C8155.74 (8)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.821.812.540 (2)147
N2—H1N2···O3ii0.862.553.1109 (19)123
O5—H2O5···O2i0.821.882.6694 (18)162
O5—H1O5···O4iii0.821.942.7568 (13)179
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2]
Mr805.73
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)8.1600 (2), 10.1122 (3), 10.4291 (3)
α, β, γ (°)66.800 (3), 74.334 (2), 80.743 (2)
V3)760.15 (4)
Z1
Radiation typeMo Kα
µ (mm1)3.50
Crystal size (mm)0.57 × 0.30 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionNumerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
Tmin, Tmax0.289, 0.484
No. of measured, independent and
observed [I > 2σ(I)] reflections
32240, 3153, 2686
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.064, 1.15
No. of reflections3153
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.49

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.821.812.540 (2)146.8
N2—H1N2···O3i0.862.553.1109 (19)123.4
O5—H2O5···O2ii0.821.882.6694 (18)161.7
O5—H1O5···O4iii0.821.942.7568 (13)179.1
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y1, z.
 

Acknowledgements

Financial support by the Slovak Ministry of Education (VEGA project No. 1/0122/08) is gratefully acknowledged.

References

First citationBujdošová, Z., Györyová, K., Kovářová, J., Hudecová, D. & Halás, L. (2009). J. Therm. Anal. Calorim. 98, 151–159.  Google Scholar
First citationCavagiolio, G., Benedetto, L., Boccaleri, E., Colangelo, D., Viano, I. & Osella, D. (2000). Inorg. Chim. Acta, 305, 61–68.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrystal Impact (2007). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationGebicki, J., Sysa-Jedrzejowska, A. & Adamus, J. (2003). Pol. J. Pharmacol. 55, 109–112.  Web of Science PubMed CAS Google Scholar
First citationGyöryová, K., Chomič, J. & Kovářová, J. (2005). J. Therm. Anal. Calorim. 80, 375–380.  Google Scholar
First citationGyöryová, K., Chomič, J., Szunyogová, E., Piknová, L., Zeleňák, V. & Vargová, Z. (2006). J. Therm. Anal. Calorim. 84, 727–732.  Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-D., Qu, Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, o1310–o1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagar, R. (1990). J. Inorg. Biochem. 40, 349–356.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNecefoglu, H., Clegg, W. & Scott, A. J. (2001a). Acta Cryst. E57, m462–m464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoglu, H., Clegg, W. & Scott, A. J. (2001b). Acta Cryst. E57, m465–m466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationÖztürk, A., Hökelek, T., Özbek, F. E. & Necefoğlu, H. (2008). Acta Cryst. E64, m1218–m1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarı, M., Gökçe, G., Gökçe, S., Şahin, E. & Necefoğlu, H. (2007). Acta Cryst. E63, m2191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m394-m395
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds