organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o936-o937

2-Amino-5-methyl­pyridinium 4-hy­droxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 March 2010; accepted 12 March 2010; online 27 March 2010)

In the title salt, C6H9N2+·C7H5O3, the carboxyl­ate mean plane of the 4-hydroxy­benzoate anion is twisted by 13.07 (4)° from the attached ring. In the crystal structure, the ions are linked into a two-dimensional network by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. Within this network, the N—H⋯O hydrogen bonds generate R22(8) ring motifs. In addition, ππ inter­actions involving the pyridinium rings, with a centroid–centroid distance of 3.7599 (4) Å, are observed.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o623-o624.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o621.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662.]). For 4-hydroxy­benzoic acid, see: Vishweshwar et al. (2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm. 5, 164-168.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]); Aakeröy et al. (2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H5O3

  • Mr = 246.26

  • Monoclinic, P 21 /c

  • a = 12.9562 (6) Å

  • b = 8.7876 (4) Å

  • c = 11.3276 (5) Å

  • β = 108.397 (1)°

  • V = 1223.78 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.39 × 0.33 × 0.27 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.975

  • 20102 measured reflections

  • 5326 independent reflections

  • 4662 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.137

  • S = 1.15

  • 5326 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3 0.957 (17) 1.726 (17) 2.6738 (9) 170.4 (15)
N2—H1N2⋯O3i 0.905 (14) 1.967 (14) 2.8443 (9) 162.9 (13)
N2—H2N2⋯O2 0.922 (14) 1.876 (14) 2.7962 (9) 176.1 (13)
O1—H101⋯O2ii 0.892 (18) 1.779 (18) 2.6635 (8) 170.7 (19)
C3—H3A⋯O2iii 1.016 (16) 2.476 (15) 3.1887 (9) 126.7 (10)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, hydrogen bonds have attracted the interest of chemists and have been widely used to design and synthesize one, two and three-dimensional supramolecular compounds (Aakeröy et al., 2002). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 4-Hydroxybenzoic acid is a good hydrogen-bond donor and can form cocrystals with other organic molecules (Vishweshwar et al., 2003). We have recently reported the crystal structures of 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-methylpyridinium nicotinate (Hemamalini & Fun, 2010c). In continuation of our studies of pyrimidinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit (Fig. 1) contains a 2-amino-5-methylpyridinium cation and a 4-hydroxybenzoate anion. In the 2-amino-5-methylpyridinium cation, a wide angle (122.65 (6)°) is subtended at the protonated N1 atom. The 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (1)Å for atom N1. The bond lengths are normal (Allen et al., 1987). In the 4-hydroxybenzoate anion, the carboxylate group is twisted slightly from the attached ring; the dihedral angle between C7–C12 and O2/O3/C12–C13 planes is 13.07 (4)°.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group N2 atom are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The hydroxyl group hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through O1—H1O1···O2 hydrogen bonds. The packing is further stabilized by weak C—H···O and ππ interactions involving the pyridinium (centroid Cg1) rings, with Cg1–Cg1 = 3.7599 (4)Å [symmetry codes: 1-x, 1-y, 1-z].

Related literature top

For background to the chemistry of substituted pyridines see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Hemamalini & Fun (2010a,b,c). For 4-hydroxybenzoic acid see: Vishweshwar et al. (2003). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997); Aakeröy et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and 4-hydroxybenzoic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.904 (14) - 0.956 (16)Å, C—H = 0.952 (16) - 1.020 (15)Å and O—H = 0.893 (18)Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms are not involing the hydrogen bond interactions are omitted for clarity.
2-Amino-5-methylpyridinium 4-hydroxybenzoate top
Crystal data top
C6H9N2+·C7H5O3F(000) = 520
Mr = 246.26Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9907 reflections
a = 12.9562 (6) Åθ = 6.5–36.2°
b = 8.7876 (4) ŵ = 0.10 mm1
c = 11.3276 (5) ÅT = 100 K
β = 108.397 (1)°Blcok, colourless
V = 1223.78 (10) Å30.39 × 0.33 × 0.27 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5326 independent reflections
Radiation source: fine-focus sealed tube4662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 35.0°, θmin = 6.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1920
Tmin = 0.963, Tmax = 0.975k = 1411
20102 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0859P)2 + 0.1288P]
where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C6H9N2+·C7H5O3V = 1223.78 (10) Å3
Mr = 246.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9562 (6) ŵ = 0.10 mm1
b = 8.7876 (4) ÅT = 100 K
c = 11.3276 (5) Å0.39 × 0.33 × 0.27 mm
β = 108.397 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4662 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.975Rint = 0.019
20102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.60 e Å3
5326 reflectionsΔρmin = 0.32 e Å3
219 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07705 (4)1.29454 (6)0.44060 (5)0.01923 (12)
O20.23879 (4)0.85691 (6)0.26656 (5)0.01752 (11)
O30.34273 (4)0.90704 (7)0.45979 (5)0.02001 (12)
C70.17088 (6)1.07237 (8)0.50635 (6)0.01751 (13)
C80.08861 (6)1.16244 (9)0.52300 (6)0.01815 (13)
C90.00128 (5)1.20628 (7)0.42014 (6)0.01493 (12)
C100.00280 (5)1.15864 (8)0.30079 (6)0.01519 (12)
C110.07897 (5)1.06554 (8)0.28576 (6)0.01482 (12)
C120.16699 (5)1.02150 (7)0.38786 (6)0.01410 (11)
C130.25438 (5)0.92210 (8)0.37051 (6)0.01435 (12)
N10.48836 (5)0.71343 (7)0.42194 (5)0.01544 (11)
N20.39201 (5)0.66496 (8)0.21647 (6)0.01851 (12)
C10.48185 (5)0.64504 (7)0.31296 (6)0.01461 (12)
C20.57195 (6)0.55617 (8)0.30846 (6)0.01732 (13)
C30.65954 (6)0.53911 (8)0.41374 (7)0.01848 (13)
C40.66298 (5)0.60787 (8)0.52806 (6)0.01614 (12)
C50.57535 (5)0.69542 (8)0.52670 (6)0.01641 (12)
C60.75785 (6)0.58625 (10)0.64330 (7)0.02191 (14)
H2A0.5718 (11)0.5103 (16)0.2257 (12)0.027 (3)*
H3A0.7256 (12)0.4762 (18)0.4148 (13)0.034 (3)*
H5A0.5712 (11)0.7533 (16)0.5988 (13)0.027 (3)*
H6A0.7657 (12)0.4804 (19)0.6662 (14)0.039 (4)*
H6B0.8244 (13)0.6124 (18)0.6294 (14)0.038 (4)*
H6C0.7483 (13)0.6507 (19)0.7124 (16)0.040 (4)*
H7A0.2334 (11)1.0425 (17)0.5794 (13)0.029 (3)*
H8A0.0899 (13)1.2010 (18)0.6068 (15)0.038 (4)*
H10A0.0628 (12)1.1968 (16)0.2289 (14)0.030 (3)*
H11A0.0758 (10)1.0333 (15)0.2012 (11)0.021 (3)*
H1010.1257 (15)1.3172 (19)0.3673 (16)0.045 (4)*
H1N10.4304 (13)0.7749 (19)0.4310 (14)0.038 (4)*
H1N20.3819 (12)0.6231 (15)0.1407 (13)0.028 (3)*
H2N20.3394 (11)0.7245 (15)0.2326 (12)0.025 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (2)0.0239 (3)0.0175 (2)0.00637 (17)0.00561 (18)0.00151 (18)
O20.0140 (2)0.0240 (2)0.0143 (2)0.00056 (16)0.00405 (16)0.00257 (17)
O30.0149 (2)0.0292 (3)0.0137 (2)0.00667 (18)0.00134 (16)0.00034 (18)
C70.0160 (3)0.0233 (3)0.0122 (2)0.0047 (2)0.0029 (2)0.0015 (2)
C80.0176 (3)0.0240 (3)0.0124 (2)0.0053 (2)0.0041 (2)0.0011 (2)
C90.0131 (2)0.0166 (3)0.0150 (2)0.00114 (18)0.00441 (19)0.00139 (19)
C100.0128 (2)0.0175 (3)0.0136 (2)0.00088 (19)0.00182 (19)0.00068 (19)
C110.0137 (2)0.0171 (3)0.0126 (2)0.00074 (19)0.00256 (19)0.00033 (19)
C120.0123 (2)0.0169 (2)0.0127 (2)0.00125 (18)0.00344 (18)0.00125 (19)
C130.0125 (2)0.0180 (3)0.0127 (2)0.00072 (19)0.00415 (19)0.00162 (19)
N10.0147 (2)0.0176 (2)0.0136 (2)0.00132 (17)0.00391 (18)0.00160 (17)
N20.0164 (2)0.0227 (3)0.0144 (2)0.00148 (19)0.00197 (19)0.00235 (19)
C10.0152 (2)0.0154 (2)0.0135 (2)0.00101 (18)0.0050 (2)0.00051 (19)
C20.0187 (3)0.0187 (3)0.0155 (3)0.0024 (2)0.0067 (2)0.0014 (2)
C30.0174 (3)0.0202 (3)0.0185 (3)0.0030 (2)0.0066 (2)0.0001 (2)
C40.0144 (2)0.0177 (3)0.0158 (3)0.0001 (2)0.0041 (2)0.0008 (2)
C50.0160 (3)0.0193 (3)0.0134 (2)0.0003 (2)0.0039 (2)0.0015 (2)
C60.0163 (3)0.0271 (3)0.0193 (3)0.0001 (2)0.0013 (2)0.0036 (2)
Geometric parameters (Å, º) top
O1—C91.3541 (8)N1—C51.3636 (9)
O1—H1010.893 (18)N1—H1N10.956 (16)
O2—C131.2670 (8)N2—C11.3331 (9)
O3—C131.2728 (8)N2—H1N20.904 (14)
C7—C81.3875 (9)N2—H2N20.922 (14)
C7—C121.4004 (9)C1—C21.4187 (9)
C7—H7A0.993 (14)C2—C31.3705 (10)
C8—C91.3978 (9)C2—H2A1.020 (13)
C8—H8A1.003 (15)C3—C41.4169 (10)
C9—C101.4003 (9)C3—H3A1.016 (15)
C10—C111.3909 (9)C4—C51.3675 (9)
C10—H10A0.990 (15)C4—C61.4962 (10)
C11—C121.3984 (9)C5—H5A0.978 (14)
C11—H11A0.987 (12)C6—H6A0.963 (16)
C12—C131.4912 (9)C6—H6B0.952 (16)
N1—C11.3516 (8)C6—H6C1.006 (17)
C9—O1—H101108.4 (11)C1—N2—H1N2123.5 (9)
C8—C7—C12121.04 (6)C1—N2—H2N2114.9 (8)
C8—C7—H7A119.8 (8)H1N2—N2—H2N2121.6 (12)
C12—C7—H7A119.1 (8)N2—C1—N1118.50 (6)
C7—C8—C9119.89 (6)N2—C1—C2123.94 (6)
C7—C8—H8A122.5 (9)N1—C1—C2117.56 (6)
C9—C8—H8A117.6 (9)C3—C2—C1119.59 (6)
O1—C9—C8117.93 (6)C3—C2—H2A121.2 (8)
O1—C9—C10122.31 (6)C1—C2—H2A119.2 (8)
C8—C9—C10119.76 (6)C2—C3—C4121.81 (6)
C11—C10—C9119.73 (6)C2—C3—H3A122.2 (8)
C11—C10—H10A122.0 (9)C4—C3—H3A116.0 (8)
C9—C10—H10A118.2 (9)C5—C4—C3116.31 (6)
C10—C11—C12121.02 (6)C5—C4—C6122.13 (6)
C10—C11—H11A119.2 (7)C3—C4—C6121.56 (6)
C12—C11—H11A119.7 (7)N1—C5—C4122.03 (6)
C11—C12—C7118.53 (6)N1—C5—H5A114.7 (8)
C11—C12—C13120.53 (6)C4—C5—H5A123.2 (8)
C7—C12—C13120.94 (6)C4—C6—H6A110.2 (9)
O2—C13—O3122.08 (6)C4—C6—H6B111.2 (9)
O2—C13—C12118.84 (6)H6A—C6—H6B104.7 (13)
O3—C13—C12119.08 (6)C4—C6—H6C109.8 (9)
C1—N1—C5122.65 (6)H6A—C6—H6C111.4 (13)
C1—N1—H1N1121.6 (9)H6B—C6—H6C109.5 (13)
C5—N1—H1N1115.7 (9)
C12—C7—C8—C91.35 (11)C11—C12—C13—O3166.93 (6)
C7—C8—C9—O1179.81 (6)C7—C12—C13—O313.29 (10)
C7—C8—C9—C100.17 (11)C5—N1—C1—N2177.71 (6)
O1—C9—C10—C11178.73 (6)C5—N1—C1—C22.43 (10)
C8—C9—C10—C111.29 (10)N2—C1—C2—C3178.20 (7)
C9—C10—C11—C121.60 (10)N1—C1—C2—C31.94 (10)
C10—C11—C12—C70.44 (10)C1—C2—C3—C40.08 (11)
C10—C11—C12—C13179.77 (6)C2—C3—C4—C51.66 (11)
C8—C7—C12—C111.05 (11)C2—C3—C4—C6178.74 (7)
C8—C7—C12—C13178.74 (6)C1—N1—C5—C40.83 (11)
C11—C12—C13—O212.12 (10)C3—C4—C5—N11.25 (10)
C7—C12—C13—O2167.67 (6)C6—C4—C5—N1179.16 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O30.957 (17)1.726 (17)2.6738 (9)170.4 (15)
N2—H1N2···O3i0.905 (14)1.967 (14)2.8443 (9)162.9 (13)
N2—H2N2···O20.922 (14)1.876 (14)2.7962 (9)176.1 (13)
O1—H101···O2ii0.892 (18)1.779 (18)2.6635 (8)170.7 (19)
C3—H3A···O2iii1.016 (16)2.476 (15)3.1887 (9)126.7 (10)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H5O3
Mr246.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.9562 (6), 8.7876 (4), 11.3276 (5)
β (°) 108.397 (1)
V3)1223.78 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.33 × 0.27
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
20102, 5326, 4662
Rint0.019
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.137, 1.15
No. of reflections5326
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O30.957 (17)1.726 (17)2.6738 (9)170.4 (15)
N2—H1N2···O3i0.905 (14)1.967 (14)2.8443 (9)162.9 (13)
N2—H2N2···O20.922 (14)1.876 (14)2.7962 (9)176.1 (13)
O1—H101···O2ii0.892 (18)1.779 (18)2.6635 (8)170.7 (19)
C3—H3A···O2iii1.016 (16)2.476 (15)3.1887 (9)126.7 (10)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o623–o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm. 5, 164–168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o936-o937
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds