organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Chloro-6-methyl-3-quinol­yl)-1-(2,3-di­hydro-1,4-benzodioxin-6-yl)prop-2-en-1-one

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bInstitute of Biochemistry, University of Balouchistan, Quetta 7800, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 23 February 2010; accepted 26 February 2010; online 3 March 2010)

In the title mol­ecule, C21H16ClNO3, the quinoline and benzene rings are inclined at 56.96 (6)° with respect to each other and the dioxine ring is in a twist-chair conformation. The structure is devoid of any classical hydrogen bonds. Rather weak inter­molecular hydrogen-bonding inter­actions of the types C—H⋯N and C—H⋯O are present, consolidating the crystal structure.

Related literature

For background to chalcones, see: Mishra et al. (2008[Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530-1535.]); Xia et al. (2000[Xia, Y., Yang, Z. Y., Xia, P., Baston, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699-701.]); Vaya et al. (1997[Vaya, J., Belinky, P. A. & Aviram, M. (1997). Free Radic. Biol. Med. 23, 302-313.]); Bhakuni & Chaturvedi (1984[Bhakuni, D. S. & Chaturvedi, R. (1984). J. Nat. Prod. 47, 585-591.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Bosen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Wu et al. (2003[Wu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett. 13, 1813-1815.]). For comparison bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Rizvi et al. (2010[Rizvi, S. U. F., Siddiqui, H. L., Zia-ur-Rehman, M., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o761.]) For the preparation of the precursor 2-chloro-6-methyl-3-formyl­quinoline, see: Meth-Cohn et al. (1981[Meth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520-1530.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16ClNO3

  • Mr = 365.80

  • Monoclinic, P 21 /c

  • a = 6.370 (3) Å

  • b = 38.735 (9) Å

  • c = 7.409 (4) Å

  • β = 114.93 (2)°

  • V = 1657.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.956, Tmax = 0.966

  • 6971 measured reflections

  • 2933 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.03

  • 2933 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.95 2.57 3.514 (3) 170
C18—H18⋯O2ii 0.95 2.53 3.266 (3) 134
C21—H21A⋯O1iii 0.99 2.53 3.406 (3) 147
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α,β-Unsaturated ketones or 1,3-diaryl-2-propen-1-ones, commonly known as chalcones, have already been recognized as antimalarial (Mishra et al., 2008), antitumor (Xia et al., 2000), antioxidant (Vaya et al., 1997), antifungal (Bhakuni & Chaturvedi, 1984), antibacterial (Nielsen et al., 2005), and anti-AIDS agents (Wu et al., 2003). Continuing our investigations in this important area (Rizvi et al., 2010) we now report the synthesis and crystal structure of a new chalcone, containing quinolyl ring system, (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(2,3-dihydro-1,4-benzodioxin-6-yl) prop-2-en-1-one, in this article. A series of chalcones related to the title compound is under investigation for their biological activities in our laboratory.

The title molecule is presented in Fig. 1. The bond distances (Allen et al., 1987) and angles are as expected and agree with the corresponding bond distances and angles reported in a closely related compound (Rizvi et al., 2010). The least-square planes of the quinoline and phenyl rings defined by atoms N1/C1—C9 and C14—C19, respectively, are inclined at 56.95 (6)° with respect to each other. The dioxine ring is in a twist-chair conformation with C20 and C21 atoms 0.425 (3) and 0.307 (3) Å on the opposite sides of the plane formed by the remining ring atoms. The structure is devoid of any classical hydrogen bonds. However, short intramolecular interactions involving Cl1 and O1 and rather weak hydrogen bonding inter-molecular interactions of the types C—H···N and C—H···O are present consolidating the crystal packing; details have been provided in Table 1.

Related literature top

For background to chalcones, see: Mishra et al. (2008); Xia et al. (2000); Vaya et al. (1997); Bhakuni & Chaturvedi (1984); Nielsen et al. (2005; Wu et al. (2003). For comparison bond lengthet al.987 s, see: Allen et al. (1987). For a related structure, see: Rizvi et al. (2010) For the preparation of the precursor 2-chloro-6-methyl-3-formylquinoline, see: Meth-Cohn et al. (1981).

Experimental top

The precursor 2-chloro-6-methyl-3-formylquinoline was prepared by reported method (Meth-Cohn et al., 1981). A mixture of 2-chloro-6-methyl-3-formylquinoline (2.055 g, 10 mmol) and 6-acetyl-1,4-benzodioxane (1.7819 g, 10 mmol) in methanol (50 ml) was stirred at room temperature followed by dropwise addition of aq. NaOH (4 ml, 10%). The stirring was continued (2 h) and the reaction mixture was kept at 273 K (24 h). Then it was poured on to ice-cold water (200 ml). The precipitates were collected by filtration, washed with cold water followed by cold MeOH. The resulting chalcone was recrystallised from CHCl3 to obtain the title compound as yellow crystalline product, (yield 2.76 g, 7.55 mmol, 75.5%), (m.p. 458-460 K).

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95, 0.98 and 0.99 Å for aromatic, methyl and methylene H-atoms, respectively, and Uiso(H) = 1.2Ueq(C). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
(E)-3-(2-Chloro-6-methyl-3-quinolyl)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)prop-2-en-1-one top
Crystal data top
C21H16ClNO3F(000) = 760
Mr = 365.80Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6971 reflections
a = 6.370 (3) Åθ = 3.6–25.3°
b = 38.735 (9) ŵ = 0.25 mm1
c = 7.409 (4) ÅT = 173 K
β = 114.93 (2)°Prism, colorless
V = 1657.8 (12) Å30.18 × 0.16 × 0.14 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2933 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 25.4°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 77
Tmin = 0.956, Tmax = 0.966k = 4645
6971 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.8409P]
where P = (Fo2 + 2Fc2)/3
2933 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H16ClNO3V = 1657.8 (12) Å3
Mr = 365.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.370 (3) ŵ = 0.25 mm1
b = 38.735 (9) ÅT = 173 K
c = 7.409 (4) Å0.18 × 0.16 × 0.14 mm
β = 114.93 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2933 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2256 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.966Rint = 0.037
6971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2933 reflectionsΔρmin = 0.23 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61049 (9)0.077424 (13)1.07582 (8)0.03394 (16)
O10.1834 (2)0.18022 (3)0.7158 (2)0.0336 (4)
O20.0375 (2)0.30663 (3)0.6559 (2)0.0320 (4)
O30.4801 (2)0.33735 (3)0.7522 (2)0.0338 (4)
N10.8742 (3)0.05188 (4)0.9228 (2)0.0267 (4)
C10.9871 (3)0.05159 (5)0.8010 (3)0.0246 (4)
C21.1233 (3)0.02252 (5)0.8050 (3)0.0287 (5)
H21.13810.00390.89320.034*
C31.2333 (3)0.02116 (5)0.6821 (3)0.0306 (5)
H31.32350.00140.68590.037*
C41.2168 (3)0.04847 (5)0.5487 (3)0.0276 (5)
C51.0885 (3)0.07697 (5)0.5472 (3)0.0269 (4)
H51.07900.09560.46050.032*
C60.9699 (3)0.07956 (5)0.6704 (3)0.0243 (4)
C70.8272 (3)0.10775 (5)0.6683 (3)0.0258 (4)
H70.81310.12690.58380.031*
C80.7085 (3)0.10785 (5)0.7868 (3)0.0241 (4)
C90.7448 (3)0.07847 (5)0.9125 (3)0.0255 (4)
C101.3379 (4)0.04523 (6)0.4128 (3)0.0350 (5)
H10A1.31230.06630.33280.042*
H10B1.27570.02530.32460.042*
H10C1.50420.04200.49280.042*
C110.5459 (3)0.13523 (5)0.7802 (3)0.0261 (5)
H110.41580.12820.80250.031*
C120.5602 (3)0.16871 (5)0.7467 (3)0.0268 (5)
H120.69040.17740.73020.032*
C130.3705 (3)0.19247 (5)0.7352 (3)0.0259 (4)
C140.4061 (3)0.23038 (5)0.7428 (3)0.0222 (4)
C150.2138 (3)0.25160 (5)0.6999 (3)0.0239 (4)
H150.06670.24150.66830.029*
C160.2342 (3)0.28706 (5)0.7026 (3)0.0235 (4)
C170.4504 (3)0.30212 (5)0.7508 (3)0.0252 (4)
C180.6434 (3)0.28131 (5)0.8000 (3)0.0300 (5)
H180.79150.29160.83820.036*
C190.6226 (3)0.24564 (5)0.7942 (3)0.0278 (5)
H190.75550.23160.82500.033*
C200.0868 (3)0.34184 (5)0.7204 (3)0.0290 (5)
H20A0.14470.34300.86700.035*
H20B0.05660.35580.66070.035*
C210.2653 (4)0.35620 (5)0.6590 (3)0.0346 (5)
H21A0.20770.35470.51250.041*
H21B0.29250.38080.69740.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0392 (3)0.0327 (3)0.0351 (3)0.0045 (2)0.0207 (2)0.0033 (2)
O10.0288 (8)0.0239 (8)0.0471 (9)0.0005 (6)0.0150 (7)0.0008 (6)
O20.0259 (7)0.0194 (7)0.0490 (9)0.0032 (6)0.0141 (7)0.0016 (6)
O30.0339 (8)0.0204 (7)0.0498 (9)0.0021 (6)0.0202 (7)0.0013 (7)
N10.0287 (9)0.0218 (9)0.0289 (9)0.0011 (7)0.0113 (8)0.0026 (7)
C10.0238 (10)0.0200 (10)0.0269 (11)0.0003 (8)0.0077 (9)0.0001 (8)
C20.0314 (11)0.0216 (10)0.0333 (12)0.0026 (8)0.0138 (9)0.0055 (9)
C30.0312 (11)0.0228 (11)0.0375 (12)0.0034 (9)0.0142 (10)0.0004 (9)
C40.0267 (10)0.0237 (11)0.0323 (11)0.0023 (8)0.0123 (9)0.0019 (9)
C50.0281 (10)0.0220 (10)0.0291 (11)0.0034 (8)0.0106 (9)0.0039 (8)
C60.0213 (9)0.0199 (10)0.0278 (11)0.0024 (8)0.0066 (8)0.0018 (8)
C70.0270 (10)0.0175 (10)0.0289 (11)0.0025 (8)0.0078 (9)0.0030 (8)
C80.0232 (10)0.0185 (10)0.0263 (10)0.0018 (8)0.0063 (8)0.0011 (8)
C90.0267 (10)0.0224 (10)0.0264 (10)0.0025 (8)0.0102 (8)0.0015 (8)
C100.0375 (12)0.0321 (12)0.0404 (13)0.0001 (9)0.0214 (11)0.0003 (10)
C110.0246 (10)0.0220 (11)0.0278 (11)0.0003 (8)0.0072 (9)0.0027 (8)
C120.0265 (10)0.0247 (11)0.0282 (11)0.0016 (8)0.0104 (9)0.0012 (8)
C130.0267 (10)0.0246 (11)0.0234 (10)0.0003 (8)0.0075 (9)0.0014 (8)
C140.0258 (10)0.0209 (10)0.0206 (10)0.0025 (8)0.0103 (8)0.0010 (8)
C150.0222 (10)0.0228 (11)0.0265 (10)0.0013 (8)0.0101 (8)0.0002 (8)
C160.0249 (10)0.0219 (10)0.0233 (10)0.0024 (8)0.0097 (8)0.0006 (8)
C170.0312 (11)0.0183 (10)0.0271 (11)0.0010 (8)0.0131 (9)0.0003 (8)
C180.0246 (10)0.0279 (11)0.0385 (12)0.0055 (9)0.0144 (9)0.0022 (9)
C190.0234 (10)0.0270 (11)0.0341 (11)0.0041 (8)0.0130 (9)0.0015 (9)
C200.0336 (11)0.0204 (11)0.0328 (11)0.0040 (9)0.0137 (9)0.0005 (9)
C210.0417 (13)0.0219 (11)0.0426 (13)0.0055 (9)0.0202 (11)0.0044 (9)
Geometric parameters (Å, º) top
Cl1—C91.752 (2)C10—H10A0.9800
O1—C131.234 (2)C10—H10B0.9800
O2—C161.378 (2)C10—H10C0.9800
O2—C201.435 (2)C11—C121.331 (3)
O3—C171.377 (2)C11—H110.9500
O3—C211.444 (2)C12—C131.492 (3)
N1—C91.301 (2)C12—H120.9500
N1—C11.371 (3)C13—C141.483 (3)
C1—C21.414 (3)C14—C151.396 (3)
C1—C61.426 (3)C14—C191.398 (3)
C2—C31.364 (3)C15—C161.379 (3)
C2—H20.9500C15—H150.9500
C3—C41.421 (3)C16—C171.396 (3)
C3—H30.9500C17—C181.385 (3)
C4—C51.371 (3)C18—C191.387 (3)
C4—C101.509 (3)C18—H180.9500
C5—C61.413 (3)C19—H190.9500
C5—H50.9500C20—C211.498 (3)
C6—C71.416 (3)C20—H20A0.9900
C7—C81.379 (3)C20—H20B0.9900
C7—H70.9500C21—H21A0.9900
C8—C91.426 (3)C21—H21B0.9900
C8—C111.469 (3)
C16—O2—C20112.99 (15)C8—C11—H11116.3
C17—O3—C21113.44 (15)C11—C12—C13119.61 (19)
C9—N1—C1117.57 (16)C11—C12—H12120.2
N1—C1—C2118.71 (17)C13—C12—H12120.2
N1—C1—C6121.93 (17)O1—C13—C14120.65 (18)
C2—C1—C6119.36 (18)O1—C13—C12119.25 (18)
C3—C2—C1120.01 (18)C14—C13—C12120.09 (18)
C3—C2—H2120.0C15—C14—C19118.90 (18)
C1—C2—H2120.0C15—C14—C13117.97 (17)
C2—C3—C4121.82 (19)C19—C14—C13123.12 (17)
C2—C3—H3119.1C16—C15—C14121.01 (18)
C4—C3—H3119.1C16—C15—H15119.5
C5—C4—C3118.31 (19)C14—C15—H15119.5
C5—C4—C10122.13 (18)O2—C16—C15118.31 (17)
C3—C4—C10119.56 (18)O2—C16—C17121.94 (17)
C4—C5—C6122.10 (18)C15—C16—C17119.75 (17)
C4—C5—H5119.0O3—C17—C18118.09 (18)
C6—C5—H5119.0O3—C17—C16122.24 (17)
C5—C6—C7124.26 (18)C18—C17—C16119.67 (18)
C5—C6—C1118.38 (17)C17—C18—C19120.62 (19)
C7—C6—C1117.32 (18)C17—C18—H18119.7
C8—C7—C6121.09 (17)C19—C18—H18119.7
C8—C7—H7119.5C18—C19—C14120.00 (18)
C6—C7—H7119.5C18—C19—H19120.0
C7—C8—C9115.58 (17)C14—C19—H19120.0
C7—C8—C11123.31 (17)O2—C20—C21109.83 (16)
C9—C8—C11121.05 (18)O2—C20—H20A109.7
N1—C9—C8126.48 (19)C21—C20—H20A109.7
N1—C9—Cl1114.99 (15)O2—C20—H20B109.7
C8—C9—Cl1118.51 (15)C21—C20—H20B109.7
C4—C10—H10A109.5H20A—C20—H20B108.2
C4—C10—H10B109.5O3—C21—C20110.74 (17)
H10A—C10—H10B109.5O3—C21—H21A109.5
C4—C10—H10C109.5C20—C21—H21A109.5
H10A—C10—H10C109.5O3—C21—H21B109.5
H10B—C10—H10C109.5C20—C21—H21B109.5
C12—C11—C8127.38 (19)H21A—C21—H21B108.1
C12—C11—H11116.3
C9—N1—C1—C2178.11 (17)C8—C11—C12—C13176.79 (18)
C9—N1—C1—C61.5 (3)C11—C12—C13—O114.8 (3)
N1—C1—C2—C3178.47 (18)C11—C12—C13—C14166.44 (18)
C6—C1—C2—C31.1 (3)O1—C13—C14—C158.8 (3)
C1—C2—C3—C40.3 (3)C12—C13—C14—C15169.95 (17)
C2—C3—C4—C50.9 (3)O1—C13—C14—C19170.08 (19)
C2—C3—C4—C10178.64 (19)C12—C13—C14—C1911.2 (3)
C3—C4—C5—C61.3 (3)C19—C14—C15—C161.7 (3)
C10—C4—C5—C6178.19 (18)C13—C14—C15—C16179.44 (17)
C4—C5—C6—C7177.15 (18)C20—O2—C16—C15162.26 (17)
C4—C5—C6—C10.5 (3)C20—O2—C16—C1718.1 (3)
N1—C1—C6—C5178.89 (17)C14—C15—C16—O2179.02 (17)
C2—C1—C6—C50.7 (3)C14—C15—C16—C170.6 (3)
N1—C1—C6—C71.0 (3)C21—O3—C17—C18167.52 (18)
C2—C1—C6—C7178.55 (17)C21—O3—C17—C1612.7 (3)
C5—C6—C7—C8177.13 (18)O2—C16—C17—O30.9 (3)
C1—C6—C7—C80.6 (3)C15—C16—C17—O3178.76 (17)
C6—C7—C8—C91.6 (3)O2—C16—C17—C18178.86 (18)
C6—C7—C8—C11175.60 (17)C15—C16—C17—C181.5 (3)
C1—N1—C9—C80.4 (3)O3—C17—C18—C19177.65 (18)
C1—N1—C9—Cl1178.80 (13)C16—C17—C18—C192.6 (3)
C7—C8—C9—N11.2 (3)C17—C18—C19—C141.6 (3)
C11—C8—C9—N1176.08 (18)C15—C14—C19—C180.6 (3)
C7—C8—C9—Cl1177.23 (14)C13—C14—C19—C18179.41 (18)
C11—C8—C9—Cl15.5 (2)C16—O2—C20—C2148.1 (2)
C7—C8—C11—C1234.3 (3)C17—O3—C21—C2043.1 (2)
C9—C8—C11—C12148.6 (2)O2—C20—C21—O362.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl10.952.723.036 (2)100
C11—H11···O10.952.422.769 (2)101
C2—H2···N1i0.952.573.514 (3)170
C18—H18···O2ii0.952.533.266 (3)134
C21—H21A···O1iii0.992.533.406 (3)147
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H16ClNO3
Mr365.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.370 (3), 38.735 (9), 7.409 (4)
β (°) 114.93 (2)
V3)1657.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.956, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6971, 2933, 2256
Rint0.037
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.03
No. of reflections2933
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl10.952.723.036 (2)100
C11—H11···O10.952.422.769 (2)101
C2—H2···N1i0.952.573.514 (3)170
C18—H18···O2ii0.952.533.266 (3)134
C21—H21A···O1iii0.992.533.406 (3)147
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors greatly appreciate financial support from the Higher Education Commission, Islamabad, and the Institute of Chemistry, University of the Punjab, Lahore.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhakuni, D. S. & Chaturvedi, R. (1984). J. Nat. Prod. 47, 585–591.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationMeth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520–1530.  CrossRef Web of Science Google Scholar
First citationMishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNielsen, S. F., Larsen, M., Bosen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRizvi, S. U. F., Siddiqui, H. L., Zia-ur-Rehman, M., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o761.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaya, J., Belinky, P. A. & Aviram, M. (1997). Free Radic. Biol. Med. 23, 302–313.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett. 13, 1813–1815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, Y., Yang, Z. Y., Xia, P., Baston, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699–701.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds