supplementary materials


si2249 scheme

Acta Cryst. (2010). E66, m436-m437    [ doi:10.1107/S1600536810010172 ]

Diacetatobis(propane-1,3-diamine)nickel(II) dihydrate

I. U. Khan, Ejaz, O. Sahin and O. Büyükgüngör

Abstract top

In the title complex, [Ni(CH3COO)2(C3H10N2)2]·2H2O, the NiII atom resides on a centre of symmetry and is in an octahedral coordination environment comprising four amino N atoms and two carboxylate O atoms. Intermolecular N-H...O and O-H...O hydrogen bonds produce R21(6), R22(12), R32(8) and R55(16) rings, which generate a two-dimensional polymeric network parallel to (001).

Comment top

The 1,3-Diaminopropane (tn) ligand behaves as a strong chelator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). Herein, we report the synthesis and structure of the title compound.

The molecular structure and atom-numbering scheme are shown in Fig. 1. The compound crystallizes in the space group P-1 with Z'=1/2. The nickel(II) ion is located on a symmetry center, and is coordinated by two O atoms from two identical carboxylate groups and four N atoms from two 1,3-diaminopropane ligands. The geometry around the nickel(II) ion (Table 1) is that of a slightly distorted octahedron, of which the equatorial plane (N1/N2/N1i/N2i) is formed by four amino N atoms [symmetry code:(i) -x, 2-y, -z]. The axial positions in the octahedron are occupied by two carboxylate O atoms (O1 and O1i). The 1,3-diaminopropane ligand shows chelating coordination behavior and displays a chair conformation [the puckering parameters (Cremer & Pople, 1975) are q2 = 0.0467 (17)Å , q3 = -0.5913 (18) Å, QT = 0.5930 (19) Å, φ = 349 (2)° and θ = 175.66 (16)°] in the equatorial direction.

The amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 2) to atom O2i so forming a C(6) (Bernstein et al., 1995) chain running parallel to the [-100] direction. Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O2ii so forming a C(6) chain running parallel to the [100] direction. The combination of N—H···O and O—H···O hydrogen bonds generates R21(6), R22(12), R32(8) and R55(16) rings parallel to the ab plane (Fig. 2).

Related literature top

For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For details of ring puckering analysis, see: Cremer & Pople (1975). For the effect of hydrogen bonding on the coordination in trans-di(salicylato)bis(1,3- diaminopropane-N,N')copper(II), see: Sundberg et al. (2001).

Experimental top

Nickel(II) acetate (0.249 g, 1.0 mmol) was dissolved in methanol (25 ml). 1,3-diaminopropane(0.148 g, 2.0 mmol) were added and the mixture refluxed for 4 hours. The blue solution formed, which was filtered off, kept the filtrate for few days. Blue blocks were obtained from methanol.

Refinement top

All H atoms bound to C atoms were refined using a riding model, with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms and C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl C atom. Water H atoms were located in difference maps and refined subject to a DFIX restraint of O—H = 0.83 (2) Å. Amino H atoms were located in difference maps and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intra- and intermolecular hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, 2-y, -z.]
[Figure 2] Fig. 2. Perspective view of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet built from R21(6), R22(12), R32(8) and R55(16) rings.
Diacetatobis(propane-1,3-diamine)nickel(II) dihydrate top
Crystal data top
[Ni(C2H3O2)2(C3H10N2)2]·2H2OZ = 1
Mr = 361.09F(000) = 194
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6268 (3) ÅCell parameters from 5325 reflections
b = 7.8164 (3) Åθ = 2.8–28.3°
c = 8.9123 (4) ŵ = 1.17 mm1
α = 73.933 (2)°T = 296 K
β = 80.797 (3)°Blocks, blue
γ = 75.323 (2)°0.32 × 0.18 × 0.13 mm
V = 427.12 (3) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2078 independent reflections
Radiation source: fine-focus sealed tube2021 reflections with I > 2σ(I)
graphiteRint = 0.025
phi and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 68
Tmin = 0.775, Tmax = 0.857k = 1010
7230 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0798P)2]
where P = (Fo2 + 2Fc2)/3
2078 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.53 e Å3
3 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ni(C2H3O2)2(C3H10N2)2]·2H2Oγ = 75.323 (2)°
Mr = 361.09V = 427.12 (3) Å3
Triclinic, P1Z = 1
a = 6.6268 (3) ÅMo Kα radiation
b = 7.8164 (3) ŵ = 1.17 mm1
c = 8.9123 (4) ÅT = 296 K
α = 73.933 (2)°0.32 × 0.18 × 0.13 mm
β = 80.797 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2078 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2021 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.857Rint = 0.025
7230 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.53 e Å3
S = 1.02Δρmin = 0.58 e Å3
2078 reflectionsAbsolute structure: ?
122 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1844 (3)0.7809 (3)0.3153 (2)0.0399 (4)
H1A0.25790.68400.36580.048*
H1B0.27140.89390.33530.048*
C20.0196 (3)0.7404 (3)0.3857 (2)0.0435 (4)
H2A0.11010.63330.35720.052*
H2B0.00850.71060.49910.052*
C30.1366 (3)0.8935 (3)0.3368 (2)0.0407 (4)
H3A0.04371.00380.35790.049*
H3B0.25370.86200.39950.049*
C40.3734 (2)0.7432 (2)0.14011 (19)0.0288 (3)
C50.4393 (3)0.6191 (3)0.2513 (3)0.0509 (5)
H5A0.55570.65260.32270.076*
H5B0.32420.63110.30940.076*
H5C0.47980.49480.19240.076*
N10.1533 (2)0.7972 (2)0.14486 (17)0.0314 (3)
H10.274 (4)0.816 (3)0.110 (3)0.047 (6)*
H20.073 (4)0.700 (4)0.135 (3)0.047 (6)*
N20.2158 (2)0.9299 (2)0.16906 (17)0.0309 (3)
H30.293 (3)0.835 (3)0.152 (2)0.036 (5)*
H40.293 (3)1.004 (3)0.145 (3)0.038 (6)*
O10.17922 (17)0.79863 (15)0.11179 (14)0.0319 (3)
O20.5114 (2)0.7828 (2)0.08414 (19)0.0492 (4)
O1W0.0788 (2)0.3937 (2)0.1862 (2)0.0462 (3)
H1W0.189 (3)0.364 (4)0.144 (3)0.067 (8)*
H2W0.001 (3)0.339 (3)0.173 (3)0.052 (7)*
Ni10.00001.00000.00000.02287 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (9)0.0370 (8)0.0357 (9)0.0139 (7)0.0100 (7)0.0089 (7)
C20.0616 (12)0.0382 (9)0.0291 (8)0.0117 (8)0.0034 (8)0.0055 (7)
C30.0528 (10)0.0434 (9)0.0297 (8)0.0125 (8)0.0085 (7)0.0110 (7)
C40.0239 (7)0.0277 (7)0.0356 (8)0.0050 (5)0.0005 (6)0.0117 (6)
C50.0316 (9)0.0667 (13)0.0661 (13)0.0010 (8)0.0004 (8)0.0463 (11)
N10.0296 (7)0.0305 (7)0.0354 (7)0.0107 (6)0.0009 (5)0.0087 (5)
N20.0276 (6)0.0339 (7)0.0330 (7)0.0053 (6)0.0044 (5)0.0118 (6)
O10.0227 (5)0.0329 (6)0.0449 (7)0.0050 (4)0.0010 (4)0.0206 (5)
O20.0255 (6)0.0670 (9)0.0704 (10)0.0107 (6)0.0005 (5)0.0441 (8)
O1W0.0329 (7)0.0489 (8)0.0668 (9)0.0088 (6)0.0035 (6)0.0316 (7)
Ni10.01974 (16)0.02373 (17)0.02636 (18)0.00491 (10)0.00030 (10)0.00948 (11)
Geometric parameters (Å, °) top
C1—N11.473 (2)C5—H5B0.9600
C1—C21.506 (3)C5—H5C0.9600
C1—H1A0.9700N1—Ni12.1152 (13)
C1—H1B0.9700N1—H10.87 (3)
C2—C31.515 (3)N1—H20.82 (3)
C2—H2A0.9700N2—Ni12.1095 (14)
C2—H2B0.9700N2—H30.82 (2)
C3—N21.477 (2)N2—H40.83 (2)
C3—H3A0.9700O1—Ni12.1031 (10)
C3—H3B0.9700O1W—H1W0.777 (16)
C4—O21.2473 (19)O1W—H2W0.789 (15)
C4—O11.2572 (17)Ni1—O1i2.1031 (10)
C4—C51.515 (2)Ni1—N2i2.1095 (14)
C5—H5A0.9600Ni1—N1i2.1152 (13)
N1—C1—C2112.28 (14)C1—N1—H1109.3 (15)
N1—C1—H1A109.1Ni1—N1—H1106.9 (16)
C2—C1—H1A109.1C1—N1—H2104.5 (16)
N1—C1—H1B109.1Ni1—N1—H2103.9 (16)
C2—C1—H1B109.1H1—N1—H2114 (2)
H1A—C1—H1B107.9C3—N2—Ni1118.74 (11)
C1—C2—C3115.24 (16)C3—N2—H3108.3 (15)
C1—C2—H2A108.5Ni1—N2—H3102.3 (15)
C3—C2—H2A108.5C3—N2—H4112.4 (15)
C1—C2—H2B108.5Ni1—N2—H4109.5 (16)
C3—C2—H2B108.5H3—N2—H4104 (2)
H2A—C2—H2B107.5C4—O1—Ni1132.72 (10)
N2—C3—C2112.68 (15)H1W—O1W—H2W110 (2)
N2—C3—H3A109.1O1i—Ni1—O1180.0
C2—C3—H3A109.1O1i—Ni1—N2i91.58 (5)
N2—C3—H3B109.1O1—Ni1—N2i88.42 (5)
C2—C3—H3B109.1O1i—Ni1—N288.42 (5)
H3A—C3—H3B107.8O1—Ni1—N291.58 (5)
O2—C4—O1125.10 (14)N2i—Ni1—N2180.0
O2—C4—C5118.96 (15)O1i—Ni1—N1i87.27 (5)
O1—C4—C5115.95 (14)O1—Ni1—N1i92.73 (5)
C4—C5—H5A109.5N2i—Ni1—N1i88.43 (6)
C4—C5—H5B109.5N2—Ni1—N1i91.57 (6)
H5A—C5—H5B109.5O1i—Ni1—N192.73 (5)
C4—C5—H5C109.5O1—Ni1—N187.27 (5)
H5A—C5—H5C109.5N2i—Ni1—N191.57 (6)
H5B—C5—H5C109.5N2—Ni1—N188.43 (6)
C1—N1—Ni1118.49 (10)N1i—Ni1—N1180.0
N1—C1—C2—C367.9 (2)C4—O1—Ni1—N1127.02 (16)
C1—C2—C3—N267.2 (2)C3—N2—Ni1—O1i51.20 (13)
C2—C1—N1—Ni159.62 (18)C3—N2—Ni1—O1128.80 (13)
C2—C3—N2—Ni158.12 (19)C3—N2—Ni1—N1i138.42 (13)
O2—C4—O1—Ni111.3 (3)C3—N2—Ni1—N141.58 (13)
C5—C4—O1—Ni1168.72 (14)C1—N1—Ni1—O1i46.03 (14)
C4—O1—Ni1—N2i141.34 (15)C1—N1—Ni1—O1133.97 (14)
C4—O1—Ni1—N238.66 (15)C1—N1—Ni1—N2i137.69 (14)
C4—O1—Ni1—N1i52.98 (16)C1—N1—Ni1—N242.31 (14)
Symmetry codes: (i) −x, −y+2, −z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O1W0.82 (3)2.30 (3)3.087 (2)160 (2)
N2—H3···O20.82 (2)2.43 (2)3.0218 (19)129.7 (19)
N1—H1···O2ii0.87 (3)2.51 (3)3.290 (2)150 (2)
N2—H4···O2iii0.83 (2)2.26 (2)3.092 (2)177 (2)
O1W—H2W···O1iv0.79 (2)2.02 (2)2.7999 (18)173 (2)
O1W—H1W···O2v0.78 (2)2.10 (2)2.848 (2)163 (3)
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y+2, −z; (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z.
Table 1
Selected geometric parameters (Å)
top
N1—Ni12.1152 (13)O1—Ni12.1031 (10)
N2—Ni12.1095 (14)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H2···O1W0.82 (3)2.30 (3)3.087 (2)160 (2)
N2—H3···O20.82 (2)2.43 (2)3.0218 (19)129.7 (19)
N1—H1···O2i0.87 (3)2.51 (3)3.290 (2)150 (2)
N2—H4···O2ii0.83 (2)2.26 (2)3.092 (2)177 (2)
O1W—H2W···O1iii0.79 (2)2.02 (2)2.7999 (18)173 (2)
O1W—H1W···O2iv0.78 (2)2.10 (2)2.848 (2)163 (3)
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z.
Acknowledgements top

IUK thanks the Higher Education Commission of Pakistan for financial support under the project Strengthening of Materials Chemistry Laboratory at GCUL.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sundberg, M. R., Kivekäs, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212–217.