organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o900-o901

(6S)-2,4-Di-tert-butyl-6-[(4S,5R)-3-iso­propyl-4-methyl-5-phenyloxazolidin-2-yl]phenol

aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: Ferrence@IllinoisState.edu

(Received 27 January 2010; accepted 9 March 2010; online 24 March 2010)

The title oxazolidine compound, C27H39NO2, was synthesized from N-isopropyl­norephedrine. The dihedral angle between the aromatic rings is 70.33 (5)°. The N atom of the heterocycle is oriented to allow intra­molecular O—H⋯N hydrogen bonding with the hydr­oxy substituent.

Related literature

For related structures and background to chiral oxazolidines, see: Agami & Couty (2004[Agami, C. & Couty, F. (2004). Eur. J. Org. Chem. 4, 677-685.]); Anderson et al. (2010[Anderson, A. E., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o902-o903.]); Bourne et al. (1997[Bourne, S. A., Fitz, L. D., Kashyap, R. P., Krawiec, M., Walker, R. B., Watson, W. H. & Williams, L. M. (1997). J. Chem. Crystallogr. 27, 35-44.]); Duffy et al. (2004[Duffy, M., Gallagher, J. F. & Lough, A. J. (2004). Acta Cryst. E60, o234-o236.]); Hitchcock et al. (2004[Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714-718.]); Koyanagi et al. (2010[Koyanagi, T., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o898-o899.]); Parrott & Hitchcock (2007[Parrott, R. W. II & Hitchcock, S. R. (2007). Tetrahedron Asymmetry, 18, 377-382.]); Parrott et al. (2008[Parrott, R. W. II, Hamaker, C. G. & Hitchcock, S. R. (2008). J. Heterocycl. Chem. 45, 873-878.]). The synthesis and absolute configuration assignment of the title compound is described by Parrott et al. (2008[Parrott, R. W. II, Hamaker, C. G. & Hitchcock, S. R. (2008). J. Heterocycl. Chem. 45, 873-878.]). The absolute configuration assignment is based on both optical activity measurements and on the known stereochemistry of the commercially obtained optically pure norephedrine from which it was prepared (Parrott et al., 2008[Parrott, R. W. II, Hamaker, C. G. & Hitchcock, S. R. (2008). J. Heterocycl. Chem. 45, 873-878.]). For geometry checks using Mogul, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). For ring puckering analysis, see: Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For a description of the Jmol toolkit for the preparation of enhanced figures, see: McMahon & Hanson (2008).

[Scheme 1]

Experimental

Crystal data
  • C27H39NO2

  • Mr = 409.59

  • Monoclinic, C 2

  • a = 18.9564 (19) Å

  • b = 6.9943 (7) Å

  • c = 18.3388 (19) Å

  • β = 91.833 (2)°

  • V = 2430.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 140 K

  • 0.55 × 0.27 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.809, Tmax = 0.992

  • 14330 measured reflections

  • 3938 independent reflections

  • 3568 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.06

  • 3938 reflections

  • 275 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯N3 0.91 (3) 1.75 (2) 2.6180 (17) 158 (2)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (McMahon & Westrip, 2008[McMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161.]).

Supporting information


Comment top

Chiral oxazolidines are useful templates for conducting asymmetric syntheses (Agami & Couty, 2004). In order to explore the utility of these compounds in the catalytic asymmetric addition of diethylzinc to aldehydes, we prepared a series of oxazolidines from (1R,2S)-ephedrine (Parrott & Hitchcock, 2007), and (1R,2S)-norephedrine (Parrott et al., 2008). In the course of synthesizing these oxazolidines, we were able to obtain crystals suitable for X-ray crystallographic analysis.

Comparison of the title compound to the CSD structure refcode ROBWIO (Bourne et al., 1997) shows similar bond lengths and angles. Differences in the two structures occur in the presence of two t-butyl groups on the phenyl ring (C18 and C20 in the title compound) and an isopropyl group on the nitrogen (N3 in the title compound) instead of a methyl group. A Mogul geometry check (Bruno et al., 2004) indicates two angles to be unusual in both structures. Angle C2—N3—C4 in the title compound and the corresponding angle in ROBWIO are similar (106.2 (1) ° and 106.3 (2) ° respectively). However, angle C5—O1—C2 in the title compound is considered unusual (103.3 (1) °) while that of ROBWIO is not (110.8 (2) °). The difference could be due to ring compression from the additional steric bulk of the two t-butyl substituents on the phenyl ring present in the title compound. The distance between the hydrogen donor and acceptor (O22 and N3 in the title compound and their analogous partners) are indistinguishable at 2.6180 (17) Å and 2.638 (432) Å, respectively.

Ring puckering analysis using PLATON (Spek, 2009; Cremer & Pople, 1975; Boeyens, 1978) indicates Φ = -7.05 (19)° for the O1—C2—N3—C4—C5 ring, which is consistent with a formal conformational assignment in between an idealized 1E envelope and a 1T5 twist with O1 being the flap apex and C5 having a slight twist. The anti-relationship between the substituents on N3 and C2, C4, and C5 is necessary to support the intramolecular hydrogen bonding present.

About the Jmol enhanced figure:

The procedure for recreating the Jmol figure is provided in the hope that readers will find it useful for creating their own. We are reporting three related structures containing Jmol enhanced figures, one in this paper and the other two in other papers in this Journal (Anderson et al., 2010; Koyanagi et al., 2010). The Jmol enhanced figures were created to illustrate a range of author convenience versus end user experience, ranging from a purely GUI driven experience for the author resulting in a less functional figure for the end user to a more sophisticated use of the Jmol scripting by the author resulting in a more polished and versatile figure for the end user. The buttons, check boxes and radio buttons in the three examples visually appear to be identical; however, the underlying code they execute results in significantly different overall responses by the Jmol visualizer.

By strictly authoring with the Jmol toolkit GUI, without text editing any code, generation of the figure is relatively quick and easy. However, doing so results in a final figure which has some significant limitations. In particular, when the end user manipulates the figure by, for example, a rotation, subsequent clicking of a radiobutton will result in the figure reseting to appear exactly as it appeared when the author saved the script. This includes all settings such as orientation and any other highlighting. This is the scenario illustrated by the Jmol enhanced figure associated with this Acta E article. The enhanced figure options were intentionally selected with an alteration of the structure's orientation, so that the molecule's orientation changes upon each option selected by the end user, which serves to emphasize the view that best show cases the selected option.

The Jmol options were created as follows:

Labels were added to atoms by navigating to the "label" sub-tab under the "select/label" tab and by checking the button "atom name" before turning the labels "on". The script was imported into a checkbox by navigating to the "checkbox" sub-tab under the "script" tab, and by clicking "import view".

The thermal displacement coloring was achieved by navigating to the "model" tab and by selecting "atomic displacement" next to the "colour" heading.

The color of particular atoms was changed by first selecting them. The atoms were selected by navigating to the "select/label" tab, turning the "highlight selection" on, and picking "within area" under "selection mode". The color of the atoms was changed by navigating to the "atoms" sub-tab and picking a color from the drop down box next to the "colour" heading.

The various atom styles were selected by navigating to the "model" tab and by selecting the atom style of choice next to the "overall style" heading.

The hydrogen bond was displayed by navigating to the "measurements" sub-tab under the "select/label" tab. The "distance" option next to the "mode" heading was then selected, followed by the hydrogen and acceptor atoms.

Related literature top

For related structures and background to chiral oxazolidines, see: Agami & Couty (2004); Anderson et al. (2010); Bourne et al. (1997); Duffy et al. (2004); Hitchcock et al. (2004); Koyanagi et al. (2010); Parrott & Hitchcock (2007); Parrott et al. (2008). The synthesis and absolute configuration assignment of the title compound is described by Parrott et al. (2008). The absolute configuration assignment is based on both optical activity measurements and on the known stereochemistry of the commercially obtained optically pure norephedrine from which it was prepared (Parrott et al., 2008). For geometry checks using Mogul, see: Bruno et al. (2004). For ring puckering analysis, see: Boeyens (1978); Cremer & Pople (1975); Spek (2009). For a description of the Jmol toolkit for the preparation of enhanced figures, see: McMahon & Hanson (2008).

Experimental top

The title compound was synthesized as previously reported (Parrott et al., 2008). Single crystals were grown by vapor diffusion of hexane into an ethyl acetate solution of the title compound.

Refinement top

All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses then, except for the O–H hydrogen atom, removed and included in the refinement in the riding-model approximation (C–H = 0.95, 0.98, and 1.00 Å for Ar–H, CH3 and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). The OH H atom was freely refined isotropically. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (McMahon & Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular H-bonding is denoted by a dashed line.
[Figure 2] Fig. 2. The enhanced Jmol figure of the title compound. This is the second in a series of three Jmol figures intended to illustrate some versatility of the program. In this Jmol, all interactive features are defined by using the graphical interface. In addition, the view associated with each script is changed to highlight the script contents. Some script artifacts occur and can only be remedied by hand-editing the scripts.
(6S)-2,4-Di-tert-butyl-6-[(4S/i>,5R)- 3-isopropyl-4-methyl-5-phenyloxazolidin-2-yl]phenol top
Crystal data top
C27H39NO2F(000) = 896
Mr = 409.59Dx = 1.119 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4163 reflections
a = 18.9564 (19) Åθ = 2.4–30.0°
b = 6.9943 (7) ŵ = 0.07 mm1
c = 18.3388 (19) ÅT = 140 K
β = 91.833 (2)°Prism, colourless
V = 2430.2 (4) Å30.55 × 0.27 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3938 independent reflections
Radiation source: sealed tube3568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 30.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2626
Tmin = 0.809, Tmax = 0.992k = 99
14330 measured reflectionsl = 2526
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.4486P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.31 e Å3
3938 reflectionsΔρmin = 0.21 e Å3
275 parameters
Crystal data top
C27H39NO2V = 2430.2 (4) Å3
Mr = 409.59Z = 4
Monoclinic, C2Mo Kα radiation
a = 18.9564 (19) ŵ = 0.07 mm1
b = 6.9943 (7) ÅT = 140 K
c = 18.3388 (19) Å0.55 × 0.27 × 0.11 mm
β = 91.833 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3938 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3568 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.992Rint = 0.035
14330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
3938 reflectionsΔρmin = 0.21 e Å3
275 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21602 (6)0.71916 (17)0.60579 (5)0.0173 (2)
C20.23499 (7)0.5793 (2)0.66002 (8)0.0151 (3)
H20.27840.51040.64510.018*
N30.17413 (6)0.4434 (2)0.65832 (7)0.0156 (2)
C40.13878 (8)0.4652 (3)0.58521 (8)0.0184 (3)
H40.13780.33960.55910.022*
C50.18794 (8)0.6063 (2)0.54634 (8)0.0168 (3)
H50.22720.53310.52420.02*
C60.15197 (8)0.7273 (3)0.48843 (8)0.0190 (3)
C70.13772 (9)0.6460 (3)0.41968 (9)0.0247 (4)
H70.15510.52220.40870.03*
C80.09812 (10)0.7473 (3)0.36750 (9)0.0310 (4)
H80.08790.69130.32110.037*
C90.07341 (9)0.9289 (3)0.38248 (10)0.0309 (4)
H90.04570.99620.34690.037*
C100.08921 (9)1.0122 (3)0.44958 (10)0.0296 (4)
H100.07341.13810.45960.036*
C110.12842 (9)0.9110 (3)0.50231 (9)0.0241 (3)
H110.13910.96840.54830.029*
C120.06366 (8)0.5394 (3)0.59313 (10)0.0265 (4)
H12A0.03560.44330.61810.04*
H12B0.04240.56470.54470.04*
H12C0.06480.65790.62170.04*
C130.19230 (8)0.2421 (2)0.67659 (9)0.0184 (3)
H130.21830.18520.63530.022*
C140.23865 (9)0.2287 (3)0.74597 (9)0.0239 (3)
H14A0.28230.30080.73950.036*
H14B0.25010.09440.7560.036*
H14C0.21330.28230.7870.036*
C150.12439 (8)0.1293 (2)0.68651 (9)0.0215 (3)
H15A0.09460.13820.6420.032*
H15B0.0990.18220.72760.032*
H15C0.1360.00510.69630.032*
C160.24901 (8)0.6727 (2)0.73341 (8)0.0146 (3)
C170.19570 (8)0.6985 (2)0.78395 (8)0.0153 (3)
C180.21200 (7)0.7788 (2)0.85336 (8)0.0157 (3)
C190.28182 (8)0.8304 (2)0.86816 (8)0.0164 (3)
H190.29330.88530.91440.02*
C200.33651 (7)0.8063 (2)0.81889 (8)0.0152 (3)
C210.31826 (7)0.7257 (2)0.75174 (8)0.0154 (3)
H210.35390.7060.71730.018*
O220.12784 (5)0.64508 (18)0.76713 (6)0.0186 (2)
C230.15478 (8)0.8022 (2)0.91039 (8)0.0177 (3)
C240.09529 (8)0.9342 (3)0.88101 (9)0.0240 (3)
H24A0.07510.88130.83550.036*
H24B0.11451.06160.87170.036*
H24C0.05850.94370.91710.036*
C250.12440 (9)0.6043 (3)0.92950 (9)0.0220 (3)
H25A0.10510.54330.88510.033*
H25B0.08680.61980.96450.033*
H25C0.1620.52410.95110.033*
C260.18409 (9)0.8921 (3)0.98124 (9)0.0224 (3)
H26A0.14610.90421.0160.034*
H26B0.20331.0190.97080.034*
H26C0.22160.81071.00220.034*
C270.41164 (8)0.8692 (2)0.84125 (8)0.0175 (3)
C280.41262 (9)1.0865 (3)0.85531 (9)0.0217 (3)
H28A0.37891.11780.89290.033*
H28B0.39951.15420.81010.033*
H28C0.46011.12570.87190.033*
C290.46469 (8)0.8238 (3)0.78232 (9)0.0241 (3)
H29A0.51180.86630.79870.036*
H29B0.45080.89050.73710.036*
H29C0.46540.68570.77350.036*
C300.43590 (8)0.7636 (3)0.91139 (9)0.0225 (3)
H30A0.40290.79050.95020.034*
H30B0.48320.80740.92660.034*
H30C0.4370.62570.90210.034*
H220.1327 (12)0.561 (4)0.7296 (12)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (5)0.0170 (5)0.0150 (5)0.0012 (4)0.0024 (4)0.0005 (4)
C20.0140 (6)0.0142 (7)0.0170 (7)0.0007 (5)0.0014 (5)0.0003 (5)
N30.0157 (5)0.0134 (6)0.0175 (6)0.0004 (5)0.0026 (4)0.0003 (5)
C40.0189 (7)0.0196 (7)0.0166 (7)0.0020 (6)0.0020 (5)0.0000 (6)
C50.0178 (6)0.0184 (7)0.0143 (6)0.0009 (6)0.0006 (5)0.0022 (6)
C60.0172 (7)0.0242 (8)0.0157 (7)0.0047 (6)0.0015 (5)0.0016 (6)
C70.0264 (8)0.0308 (9)0.0172 (7)0.0099 (7)0.0023 (6)0.0016 (7)
C80.0317 (9)0.0466 (12)0.0146 (7)0.0189 (9)0.0030 (6)0.0049 (8)
C90.0228 (8)0.0445 (12)0.0249 (8)0.0102 (8)0.0044 (6)0.0169 (8)
C100.0266 (8)0.0332 (10)0.0292 (9)0.0026 (7)0.0007 (7)0.0102 (8)
C110.0258 (8)0.0278 (9)0.0185 (7)0.0030 (7)0.0011 (6)0.0021 (7)
C120.0162 (7)0.0381 (10)0.0249 (8)0.0015 (7)0.0024 (6)0.0101 (8)
C130.0178 (7)0.0148 (7)0.0229 (7)0.0015 (6)0.0016 (5)0.0002 (6)
C140.0238 (8)0.0186 (8)0.0290 (8)0.0014 (6)0.0048 (6)0.0047 (7)
C150.0231 (7)0.0167 (8)0.0247 (8)0.0019 (6)0.0026 (6)0.0002 (6)
C160.0165 (7)0.0122 (7)0.0150 (6)0.0010 (5)0.0006 (5)0.0000 (5)
C170.0136 (6)0.0138 (7)0.0184 (7)0.0010 (5)0.0006 (5)0.0007 (5)
C180.0161 (6)0.0138 (7)0.0171 (7)0.0018 (5)0.0012 (5)0.0012 (5)
C190.0171 (7)0.0176 (7)0.0145 (6)0.0004 (5)0.0007 (5)0.0010 (6)
C200.0134 (6)0.0149 (7)0.0172 (7)0.0003 (5)0.0005 (5)0.0010 (6)
C210.0143 (6)0.0153 (7)0.0167 (6)0.0014 (5)0.0020 (5)0.0001 (6)
O220.0135 (5)0.0222 (6)0.0201 (5)0.0010 (4)0.0000 (4)0.0036 (5)
C230.0146 (6)0.0202 (8)0.0183 (7)0.0013 (6)0.0023 (5)0.0004 (6)
C240.0206 (7)0.0260 (9)0.0256 (8)0.0067 (7)0.0036 (6)0.0019 (7)
C250.0213 (7)0.0246 (9)0.0204 (7)0.0038 (6)0.0029 (6)0.0021 (6)
C260.0219 (7)0.0259 (9)0.0197 (7)0.0018 (7)0.0041 (6)0.0045 (6)
C270.0135 (6)0.0207 (8)0.0181 (7)0.0012 (6)0.0004 (5)0.0014 (6)
C280.0200 (7)0.0207 (8)0.0243 (8)0.0034 (6)0.0002 (6)0.0030 (6)
C290.0141 (7)0.0334 (9)0.0248 (8)0.0021 (6)0.0025 (6)0.0082 (7)
C300.0170 (7)0.0271 (9)0.0230 (7)0.0024 (6)0.0030 (6)0.0009 (7)
Geometric parameters (Å, º) top
O1—C21.4324 (18)C16—C171.405 (2)
O1—C51.4345 (18)C17—O221.3652 (17)
C2—N31.4947 (19)C17—C181.416 (2)
C2—C161.512 (2)C18—C191.390 (2)
C2—H21C18—C231.539 (2)
N3—C131.485 (2)C19—C201.407 (2)
N3—C41.4875 (19)C19—H190.95
C4—C121.527 (2)C20—C211.388 (2)
C4—C51.547 (2)C20—C271.534 (2)
C4—H41C21—H210.95
C5—C61.504 (2)O22—H220.91 (3)
C5—H51C23—C261.532 (2)
C6—C111.386 (3)C23—C241.541 (2)
C6—C71.401 (2)C23—C251.544 (2)
C7—C81.391 (3)C24—H24A0.98
C7—H70.95C24—H24B0.98
C8—C91.384 (3)C24—H24C0.98
C8—H80.95C25—H25A0.98
C9—C101.386 (3)C25—H25B0.98
C9—H90.95C25—H25C0.98
C10—C111.394 (2)C26—H26A0.98
C10—H100.95C26—H26B0.98
C11—H110.95C26—H26C0.98
C12—H12A0.98C27—C291.533 (2)
C12—H12B0.98C27—C301.541 (2)
C12—H12C0.98C27—C281.541 (2)
C13—C141.526 (2)C28—H28A0.98
C13—C151.526 (2)C28—H28B0.98
C13—H131C28—H28C0.98
C14—H14A0.98C29—H29A0.98
C14—H14B0.98C29—H29B0.98
C14—H14C0.98C29—H29C0.98
C15—H15A0.98C30—H30A0.98
C15—H15B0.98C30—H30B0.98
C15—H15C0.98C30—H30C0.98
C16—C211.395 (2)
C2—O1—C5103.35 (11)C17—C16—C2122.22 (13)
O1—C2—N3104.08 (11)O22—C17—C16120.56 (13)
O1—C2—C16110.87 (12)O22—C17—C18119.24 (13)
N3—C2—C16114.02 (12)C16—C17—C18120.20 (13)
O1—C2—H2109.2C19—C18—C17117.22 (13)
N3—C2—H2109.2C19—C18—C23121.78 (13)
C16—C2—H2109.2C17—C18—C23120.97 (13)
C13—N3—C4113.28 (13)C18—C19—C20124.06 (14)
C13—N3—C2115.16 (12)C18—C19—H19118
C4—N3—C2106.19 (11)C20—C19—H19118
N3—C4—C12110.11 (12)C21—C20—C19116.77 (13)
N3—C4—C5102.71 (11)C21—C20—C27123.82 (13)
C12—C4—C5113.85 (14)C19—C20—C27119.41 (13)
N3—C4—H4110C20—C21—C16121.85 (13)
C12—C4—H4110C20—C21—H21119.1
C5—C4—H4110C16—C21—H21119.1
O1—C5—C6112.09 (13)C17—O22—H22103.2 (14)
O1—C5—C4102.43 (11)C26—C23—C18112.07 (12)
C6—C5—C4114.71 (12)C26—C23—C24106.97 (14)
O1—C5—H5109.1C18—C23—C24110.48 (12)
C6—C5—H5109.1C26—C23—C25107.66 (13)
C4—C5—H5109.1C18—C23—C25109.56 (13)
C11—C6—C7119.14 (16)C24—C23—C25110.02 (13)
C11—C6—C5122.20 (14)C23—C24—H24A109.5
C7—C6—C5118.51 (16)C23—C24—H24B109.5
C8—C7—C6119.79 (18)H24A—C24—H24B109.5
C8—C7—H7120.1C23—C24—H24C109.5
C6—C7—H7120.1H24A—C24—H24C109.5
C9—C8—C7120.60 (17)H24B—C24—H24C109.5
C9—C8—H8119.7C23—C25—H25A109.5
C7—C8—H8119.7C23—C25—H25B109.5
C8—C9—C10119.83 (17)H25A—C25—H25B109.5
C8—C9—H9120.1C23—C25—H25C109.5
C10—C9—H9120.1H25A—C25—H25C109.5
C9—C10—C11119.83 (19)H25B—C25—H25C109.5
C9—C10—H10120.1C23—C26—H26A109.5
C11—C10—H10120.1C23—C26—H26B109.5
C6—C11—C10120.75 (17)H26A—C26—H26B109.5
C6—C11—H11119.6C23—C26—H26C109.5
C10—C11—H11119.6H26A—C26—H26C109.5
C4—C12—H12A109.5H26B—C26—H26C109.5
C4—C12—H12B109.5C29—C27—C20112.13 (13)
H12A—C12—H12B109.5C29—C27—C30107.72 (13)
C4—C12—H12C109.5C20—C27—C30109.61 (13)
H12A—C12—H12C109.5C29—C27—C28108.51 (14)
H12B—C12—H12C109.5C20—C27—C28109.48 (13)
N3—C13—C14111.70 (13)C30—C27—C28109.35 (14)
N3—C13—C15109.08 (13)C27—C28—H28A109.5
C14—C13—C15109.52 (13)C27—C28—H28B109.5
N3—C13—H13108.8H28A—C28—H28B109.5
C14—C13—H13108.8C27—C28—H28C109.5
C15—C13—H13108.8H28A—C28—H28C109.5
C13—C14—H14A109.5H28B—C28—H28C109.5
C13—C14—H14B109.5C27—C29—H29A109.5
H14A—C14—H14B109.5C27—C29—H29B109.5
C13—C14—H14C109.5H29A—C29—H29B109.5
H14A—C14—H14C109.5C27—C29—H29C109.5
H14B—C14—H14C109.5H29A—C29—H29C109.5
C13—C15—H15A109.5H29B—C29—H29C109.5
C13—C15—H15B109.5C27—C30—H30A109.5
H15A—C15—H15B109.5C27—C30—H30B109.5
C13—C15—H15C109.5H30A—C30—H30B109.5
H15A—C15—H15C109.5C27—C30—H30C109.5
H15B—C15—H15C109.5H30A—C30—H30C109.5
C21—C16—C17119.90 (13)H30B—C30—H30C109.5
C21—C16—C2117.82 (13)
C5—O1—C2—N343.06 (13)O1—C2—C16—C2192.31 (16)
C5—O1—C2—C16166.07 (12)N3—C2—C16—C21150.63 (13)
O1—C2—N3—C13148.89 (12)O1—C2—C16—C1790.78 (16)
C16—C2—N3—C1390.19 (16)N3—C2—C16—C1726.3 (2)
O1—C2—N3—C422.67 (15)C21—C16—C17—O22179.16 (14)
C16—C2—N3—C4143.59 (13)C2—C16—C17—O222.3 (2)
C13—N3—C4—C12115.78 (16)C21—C16—C17—C180.2 (2)
C2—N3—C4—C12116.86 (14)C2—C16—C17—C18177.09 (14)
C13—N3—C4—C5122.62 (14)O22—C17—C18—C19179.78 (14)
C2—N3—C4—C54.73 (15)C16—C17—C18—C190.4 (2)
C2—O1—C5—C6169.17 (12)O22—C17—C18—C231.4 (2)
C2—O1—C5—C445.70 (14)C16—C17—C18—C23178.02 (14)
N3—C4—C5—O130.41 (15)C17—C18—C19—C200.5 (2)
C12—C4—C5—O188.60 (15)C23—C18—C19—C20177.89 (15)
N3—C4—C5—C6152.11 (13)C18—C19—C20—C210.0 (2)
C12—C4—C5—C633.09 (19)C18—C19—C20—C27179.87 (15)
O1—C5—C6—C1120.2 (2)C19—C20—C21—C160.7 (2)
C4—C5—C6—C1196.10 (18)C27—C20—C21—C16179.21 (15)
O1—C5—C6—C7164.23 (13)C17—C16—C21—C200.8 (2)
C4—C5—C6—C779.51 (18)C2—C16—C21—C20177.78 (14)
C11—C6—C7—C82.4 (2)C19—C18—C23—C261.8 (2)
C5—C6—C7—C8173.36 (14)C17—C18—C23—C26179.90 (15)
C6—C7—C8—C90.9 (2)C19—C18—C23—C24120.96 (16)
C7—C8—C9—C101.1 (3)C17—C18—C23—C2460.72 (19)
C8—C9—C10—C111.6 (3)C19—C18—C23—C25117.67 (16)
C7—C6—C11—C101.9 (2)C17—C18—C23—C2560.66 (18)
C5—C6—C11—C10173.66 (16)C21—C20—C27—C292.7 (2)
C9—C10—C11—C60.1 (3)C19—C20—C27—C29177.39 (15)
C4—N3—C13—C14170.85 (12)C21—C20—C27—C30122.31 (16)
C2—N3—C13—C1448.35 (18)C19—C20—C27—C3057.81 (19)
C4—N3—C13—C1567.93 (16)C21—C20—C27—C28117.75 (17)
C2—N3—C13—C15169.56 (12)C19—C20—C27—C2862.13 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···N30.91 (3)1.75 (2)2.6180 (17)158 (2)

Experimental details

Crystal data
Chemical formulaC27H39NO2
Mr409.59
Crystal system, space groupMonoclinic, C2
Temperature (K)140
a, b, c (Å)18.9564 (19), 6.9943 (7), 18.3388 (19)
β (°) 91.833 (2)
V3)2430.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.55 × 0.27 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.809, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14330, 3938, 3568
Rint0.035
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.06
No. of reflections3938
No. of parameters275
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and publCIF (McMahon & Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···N30.91 (3)1.75 (2)2.6180 (17)158 (2)
 

Acknowledgements

This material is based upon work supported by the US National Science Foundation (CHE-0348158 to GMF). GMF thanks Matthias Zeller of the Youngstown State University Structure & Chemical Instrumentation Facility for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.

References

First citationAgami, C. & Couty, F. (2004). Eur. J. Org. Chem. 4, 677–685.  Web of Science CrossRef Google Scholar
First citationAnderson, A. E., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o902–o903.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBourne, S. A., Fitz, L. D., Kashyap, R. P., Krawiec, M., Walker, R. B., Watson, W. H. & Williams, L. M. (1997). J. Chem. Crystallogr. 27, 35–44.  CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuffy, M., Gallagher, J. F. & Lough, A. J. (2004). Acta Cryst. E60, o234–o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714–718.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKoyanagi, T., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o898–o899.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMahon, B. & Hanson, R. M. (2008). J. Appl. Cryst. 41, 811–814.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161.  CrossRef IUCr Journals Google Scholar
First citationParrott, R. W. II, Hamaker, C. G. & Hitchcock, S. R. (2008). J. Heterocycl. Chem. 45, 873–878.  CSD CrossRef CAS Google Scholar
First citationParrott, R. W. II & Hitchcock, S. R. (2007). Tetrahedron Asymmetry, 18, 377–382.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o900-o901
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds