organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o964-o965

4-[(2,5-Di­methyl-1,3-thia­zol-4-yl)meth­yl]-4-hydr­­oxy-2-methyl­iso­quinoline-1,3(2H,4H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 22 March 2010; accepted 24 March 2010; online 27 March 2010)

In the title isoquinoline­dione compound, C16H16N2O3S, the piperidine ring in the tetra­hydro­isoquinoline ring system adopts a half-boat conformation. The essentially planar thia­zole ring [maximum deviation = 0.007 (2) Å] makes a dihedral angle of 34.49 (7)° with the mean plane through the tetra­hydro­isoquinoline ring system. In the crystal structure, two neighbouring mol­ecules are linked via pairs of O—H⋯N and C—H⋯O hydrogen bonds into inversion-related dimers incorporating R22(9) hydrogen-bond ring motifs. These dimers are further linked by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and applications of isoquinoline­dione derivatives, see: Griesbeck et al. (2003[Griesbeck, A. G., Bondock, S. & Lex, J. (2003). J. Org. Chem. 68, 9899-9906.]); Suau & Villatoro (1994[Suau, R. & Villatoro, E. P. de I. (1994). Tetrahedron, 50, 4987-4994.]); Zhang et al. (2000[Zhang, Y., Qian, S.-P., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett. 41, 8141-8145.], 2004[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-H. (2004). Org. Lett. 6, 4893-4895.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2010a[Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010a). Acta Cryst. E66, o724-o725.],b[Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010b). Acta Cryst. E66, o803-o804.],c[Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010c). Acta Cryst. E66, o940-o941.]); Wang et al. (2000[Wang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed. 26, 679-689.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3S

  • Mr = 316.37

  • Monoclinic, P 21 /c

  • a = 8.5793 (2) Å

  • b = 10.4438 (2) Å

  • c = 17.5496 (3) Å

  • β = 114.304 (1)°

  • V = 1433.09 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.14 mm−1

  • T = 100 K

  • 0.32 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.546, Tmax = 0.782

  • 22926 measured reflections

  • 2343 independent reflections

  • 2311 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.135

  • S = 1.33

  • 2343 reflections

  • 264 parameters

  • All H-atom parameters refined

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the C11/C12/S1/C13/N2 thia­zol ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N2i 0.84 (3) 2.35 (3) 3.174 (2) 167 (3)
C10—H10A⋯O1i 0.96 (2) 2.39 (2) 3.163 (2) 138 (2)
C14—H14BCg1ii 0.97 (3) 2.71 (3) 3.403 (2) 129 (2)
C15—H15BCg2iii 0.97 (3) 2.89 (2) 3.537 (2) 125.4 (18)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Photo-induced reactions between carbonyl groups acting as electron acceptors and substituted oxazoles as electron donors have been reported to proceed via [2+2] (Griesbeck et al., 2003) or [4+4] photocycloaddition reactions (Zhang et al., 2004). 1,3,4(2H)-Isoquinolinetrione derivatives have been used as carbonyl containing systems to take part in the photo-induced reactions with acetylenes (Zhang et al., 2000). The reaction between 1,3,4(2H)-isoquinolinetrione and toluene gave the H-abstracted product (Suau & Villatoro, 1994). Hence the compounds containing functional groups with similar bond energy, for example, allyl or aldehyde, may give rise to photo-induced H-abstracted reaction. The crystal structure of Z-2-methyl-3'-phenyl-spiro[isoquinoline-4,2'-oxirane]-1,3-dione has been reported (Wang et al., 2000). This paper reports the structure of the title compound, a typical H-abstracted product of the photoreaction between a carbonyl derivative and a thiazole.

In the title isoquinolinedione compound (Fig. 1), atom C9 is the chiral center. The piperidine ring (C1/N1/C2/C3/C8/C9) of the tetrahydroisoquinoline ring system adopts a half-boat conformation (Cremer & Pople, 1975) with puckering parameters of Q = 0.2975 (19) Å, θ = 70.7 (3)° and ϕ = 115.7 (4)° . The thiazol ring (C11/C12/S1/C13/N2) is essentially planar, with maximum deviation of 0.007 (2) Å at atom N2. The dihedral angle formed between the mean planes of the thiazol ring and the tetrahydroisoquinoline ring system is 34.49 (7)°. Bond lengths and angles are consistent with those in related isoquinoline-1,3-dione structures (Fun et al. 2010a,b,c; Zhang et al., 2004).

In the crystal structure (Fig. 2), two inversion-related molecules are linked into dimers incorporating of R22(9) hydrogen-bond ring motifs (Bernstein et al., 1995) by O3—H1O3···N2 and C10—H10A···O1 hydrogen bonds (Table 1). These dimers are further interconnected by weak C14—H14B···Cg1 and C15—H15B···Cg2 interactions (Table 1) [Cg1 and Cg2 are the centroids of the C3-C8 benzene ring and the thiazol ring, respectively].

Related literature top

For general background to and applications of isoquinolinedione derivatives, see: Griesbeck et al. (2003); Suau & Villatoro (1994); Zhang et al. (2000, 2004). For ring conformations, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010a,b,c); Wang et al. (2000). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained in the reaction between 1,3,4(2H)-isoquinolinetrione (1 mmol, 189 mg) and 2,4,5-trimethyl thiazoles (6 mmol, 762 mg) in dry acetonitrile (50 ml) under 400 nm photo-irradiation. The compound was purified by flash column chromatography with ethyl acetate and petroleum ether (1:4, v:v). X-ray quality single crystals of the title compound were obtained through slow evaporation of solvents from a solution of acetone and petroleum ether (1:5, v:v).

Refinement top

All the H atoms were located from difference Fourier map [range of C—H = 0.93 (3) - 0.98 (3) Å] and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis, showing the molecules linked into dimers. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
4-[(2,5-Dimethyl-1,3-thiazol-4-yl)methyl]-4-hydroxy-2-methylisoquinoline- 1,3(2H,4H)-dione top
Crystal data top
C16H16N2O3SF(000) = 664
Mr = 316.37Dx = 1.466 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9047 reflections
a = 8.5793 (2) Åθ = 5.1–67.1°
b = 10.4438 (2) ŵ = 2.14 mm1
c = 17.5496 (3) ÅT = 100 K
β = 114.304 (1)°Block, colourless
V = 1433.09 (5) Å30.32 × 0.19 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
2343 independent reflections
Radiation source: fine-focus sealed tube2311 reflections with I > 2σ(I)
None monochromatorRint = 0.021
ϕ and ω scansθmax = 65.0°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 108
Tmin = 0.546, Tmax = 0.782k = 1112
22926 measured reflectionsl = 1720
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.3552P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max = 0.001
2343 reflectionsΔρmax = 0.87 e Å3
264 parametersΔρmin = 1.01 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (2)
Crystal data top
C16H16N2O3SV = 1433.09 (5) Å3
Mr = 316.37Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.5793 (2) ŵ = 2.14 mm1
b = 10.4438 (2) ÅT = 100 K
c = 17.5496 (3) Å0.32 × 0.19 × 0.12 mm
β = 114.304 (1)°
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
2343 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2311 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.782Rint = 0.021
22926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.135All H-atom parameters refined
S = 1.33Δρmax = 0.87 e Å3
2343 reflectionsΔρmin = 1.01 e Å3
264 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.09845 (5)0.83482 (4)1.10440 (3)0.0194 (3)
O10.38500 (16)0.80117 (12)1.02541 (8)0.0215 (4)
O20.82233 (18)0.52224 (13)1.07705 (8)0.0275 (4)
O30.33049 (17)0.82715 (12)0.86199 (8)0.0201 (4)
N10.6048 (2)0.66140 (13)1.05324 (10)0.0176 (4)
N20.80660 (19)0.91667 (14)1.08986 (9)0.0182 (4)
C10.4850 (2)0.74898 (16)1.00286 (11)0.0174 (4)
C20.7103 (2)0.58819 (16)1.02692 (11)0.0190 (4)
C30.6699 (2)0.58984 (16)0.93626 (11)0.0178 (4)
C40.7471 (2)0.49838 (17)0.90499 (12)0.0205 (4)
C50.7076 (2)0.49498 (17)0.82010 (12)0.0229 (5)
C60.5912 (3)0.58198 (18)0.76658 (12)0.0220 (4)
C70.5162 (2)0.67391 (17)0.79782 (12)0.0200 (4)
C80.5556 (2)0.67879 (16)0.88301 (12)0.0172 (4)
C90.4934 (2)0.78679 (17)0.92028 (11)0.0171 (4)
C100.6204 (2)0.90246 (16)0.93867 (11)0.0164 (4)
C110.7918 (2)0.88586 (16)1.00992 (11)0.0166 (4)
C120.9358 (2)0.84040 (15)1.00461 (12)0.0177 (4)
C130.9603 (2)0.89292 (17)1.14552 (11)0.0195 (4)
C140.6343 (3)0.65094 (18)1.14136 (12)0.0208 (5)
C150.9659 (3)0.8009 (2)0.92990 (12)0.0209 (4)
C161.0194 (3)0.9151 (2)1.23738 (12)0.0266 (5)
H4A0.824 (3)0.439 (2)0.9426 (14)0.023 (5)*
H5A0.762 (3)0.433 (2)0.7991 (15)0.032 (6)*
H6A0.563 (3)0.581 (2)0.7073 (15)0.026 (6)*
H7A0.439 (3)0.736 (2)0.7631 (15)0.027 (6)*
H10A0.564 (3)0.975 (2)0.9491 (13)0.018 (5)*
H10B0.633 (3)0.9172 (19)0.8877 (14)0.016 (5)*
H14A0.541 (4)0.692 (3)1.1484 (17)0.040 (7)*
H14B0.634 (3)0.561 (2)1.1555 (14)0.025 (5)*
H14C0.729 (4)0.693 (3)1.1756 (17)0.033 (6)*
H15A0.988 (3)0.711 (3)0.9309 (17)0.041 (7)*
H15B1.058 (3)0.850 (2)0.9259 (16)0.033 (6)*
H15C0.869 (4)0.820 (3)0.8790 (19)0.043 (7)*
H16A1.029 (4)1.003 (3)1.2454 (19)0.056 (9)*
H16B0.939 (4)0.885 (3)1.2568 (18)0.046 (7)*
H16C1.133 (4)0.878 (3)1.270 (2)0.050 (8)*
H1O30.297 (4)0.889 (3)0.8823 (19)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0153 (4)0.0216 (4)0.0198 (4)0.00071 (15)0.0057 (2)0.00131 (15)
O10.0209 (7)0.0208 (7)0.0262 (7)0.0007 (5)0.0131 (6)0.0012 (5)
O20.0293 (8)0.0307 (8)0.0218 (7)0.0109 (6)0.0097 (6)0.0053 (6)
O30.0146 (7)0.0226 (7)0.0198 (7)0.0032 (5)0.0037 (6)0.0003 (5)
N10.0189 (9)0.0167 (8)0.0171 (8)0.0009 (6)0.0075 (7)0.0003 (5)
N20.0184 (9)0.0172 (8)0.0187 (8)0.0018 (6)0.0072 (6)0.0016 (6)
C10.0160 (9)0.0146 (8)0.0206 (9)0.0036 (7)0.0067 (7)0.0025 (7)
C20.0188 (10)0.0159 (9)0.0223 (10)0.0005 (7)0.0085 (8)0.0004 (7)
C30.0173 (10)0.0161 (9)0.0209 (9)0.0035 (7)0.0086 (7)0.0013 (7)
C40.0216 (10)0.0171 (9)0.0247 (9)0.0003 (7)0.0112 (8)0.0009 (7)
C50.0278 (11)0.0181 (9)0.0280 (10)0.0042 (8)0.0167 (8)0.0054 (7)
C60.0273 (11)0.0214 (9)0.0197 (9)0.0079 (7)0.0122 (8)0.0039 (7)
C70.0202 (11)0.0187 (9)0.0201 (10)0.0032 (7)0.0073 (8)0.0005 (7)
C80.0147 (10)0.0166 (9)0.0203 (9)0.0043 (6)0.0073 (7)0.0020 (7)
C90.0133 (9)0.0182 (9)0.0176 (9)0.0002 (7)0.0043 (7)0.0000 (7)
C100.0173 (10)0.0144 (9)0.0175 (9)0.0001 (7)0.0071 (8)0.0007 (7)
C110.0179 (10)0.0130 (9)0.0188 (9)0.0018 (6)0.0075 (7)0.0001 (6)
C120.0169 (10)0.0145 (9)0.0206 (10)0.0027 (6)0.0066 (8)0.0002 (6)
C130.0180 (10)0.0185 (9)0.0221 (9)0.0017 (7)0.0083 (7)0.0017 (7)
C140.0256 (12)0.0205 (10)0.0173 (10)0.0019 (8)0.0098 (9)0.0001 (7)
C150.0187 (10)0.0234 (10)0.0218 (10)0.0010 (8)0.0095 (8)0.0012 (8)
C160.0220 (11)0.0356 (12)0.0202 (10)0.0005 (9)0.0065 (9)0.0045 (8)
Geometric parameters (Å, º) top
S1—C131.7317 (18)C6—H6A0.97 (2)
S1—C121.7337 (19)C7—C81.391 (3)
O1—C11.212 (2)C7—H7A0.95 (3)
O2—C21.215 (2)C8—C91.508 (2)
O3—C91.414 (2)C9—C101.569 (2)
O3—H1O30.84 (3)C10—C111.497 (2)
N1—C11.388 (2)C10—H10A0.95 (2)
N1—C21.400 (2)C10—H10B0.96 (2)
N1—C141.465 (2)C11—C121.363 (3)
N2—C131.301 (2)C12—C151.495 (3)
N2—C111.393 (2)C13—C161.495 (3)
C1—C91.532 (2)C14—H14A0.96 (3)
C2—C31.482 (3)C14—H14B0.97 (3)
C3—C81.394 (3)C14—H14C0.90 (3)
C3—C41.397 (3)C15—H15A0.95 (3)
C4—C51.386 (3)C15—H15B0.97 (3)
C4—H4A0.95 (2)C15—H15C0.96 (3)
C5—C61.390 (3)C16—H16A0.93 (3)
C5—H5A0.96 (3)C16—H16B0.94 (3)
C6—C71.388 (3)C16—H16C0.98 (3)
C13—S1—C1290.28 (9)C1—C9—C10107.64 (14)
C9—O3—H1O3109 (2)C11—C10—C9116.27 (14)
C1—N1—C2124.01 (15)C11—C10—H10A109.3 (13)
C1—N1—C14118.86 (15)C9—C10—H10A106.8 (13)
C2—N1—C14116.94 (15)C11—C10—H10B110.6 (13)
C13—N2—C11110.88 (15)C9—C10—H10B105.4 (13)
O1—C1—N1121.76 (16)H10A—C10—H10B108.0 (17)
O1—C1—C9120.54 (16)C12—C11—N2116.10 (16)
N1—C1—C9117.49 (15)C12—C11—C10126.12 (16)
O2—C2—N1119.78 (16)N2—C11—C10117.76 (15)
O2—C2—C3123.34 (16)C11—C12—C15130.18 (18)
N1—C2—C3116.76 (15)C11—C12—S1108.55 (14)
C8—C3—C4120.56 (17)C15—C12—S1121.27 (14)
C8—C3—C2121.10 (16)N2—C13—C16124.69 (17)
C4—C3—C2118.33 (16)N2—C13—S1114.19 (13)
C5—C4—C3119.64 (17)C16—C13—S1121.11 (14)
C5—C4—H4A121.7 (13)N1—C14—H14A108.1 (17)
C3—C4—H4A118.7 (13)N1—C14—H14B108.9 (13)
C4—C5—C6119.94 (17)H14A—C14—H14B108 (2)
C4—C5—H5A119.3 (15)N1—C14—H14C112.7 (16)
C6—C5—H5A120.7 (15)H14A—C14—H14C105 (2)
C7—C6—C5120.40 (17)H14B—C14—H14C113 (2)
C7—C6—H6A118.9 (13)C12—C15—H15A111.0 (16)
C5—C6—H6A120.7 (13)C12—C15—H15B111.1 (15)
C6—C7—C8120.17 (17)H15A—C15—H15B111 (2)
C6—C7—H7A122.3 (14)C12—C15—H15C111.2 (17)
C8—C7—H7A117.5 (14)H15A—C15—H15C108 (2)
C7—C8—C3119.26 (16)H15B—C15—H15C104 (2)
C7—C8—C9121.39 (16)C13—C16—H16A106.6 (19)
C3—C8—C9118.99 (16)C13—C16—H16B111.3 (18)
O3—C9—C8109.28 (15)H16A—C16—H16B108 (3)
O3—C9—C1110.12 (14)C13—C16—H16C112.4 (18)
C8—C9—C1112.37 (14)H16A—C16—H16C107 (3)
O3—C9—C10108.37 (14)H16B—C16—H16C111 (3)
C8—C9—C10108.97 (14)
C2—N1—C1—O1172.72 (16)C3—C8—C9—C130.6 (2)
C14—N1—C1—O112.4 (2)C7—C8—C9—C1084.4 (2)
C2—N1—C1—C912.5 (2)C3—C8—C9—C1088.64 (19)
C14—N1—C1—C9162.30 (16)O1—C1—C9—O330.9 (2)
C1—N1—C2—O2173.39 (17)N1—C1—C9—O3154.29 (15)
C14—N1—C2—O21.5 (2)O1—C1—C9—C8152.96 (16)
C1—N1—C2—C310.5 (2)N1—C1—C9—C832.2 (2)
C14—N1—C2—C3174.59 (15)O1—C1—C9—C1087.05 (19)
O2—C2—C3—C8171.67 (18)N1—C1—C9—C1087.76 (18)
N1—C2—C3—C812.4 (2)O3—C9—C10—C11169.71 (14)
O2—C2—C3—C49.4 (3)C8—C9—C10—C1171.47 (19)
N1—C2—C3—C4166.57 (16)C1—C9—C10—C1150.6 (2)
C8—C3—C4—C50.9 (3)C13—N2—C11—C121.1 (2)
C2—C3—C4—C5177.98 (16)C13—N2—C11—C10177.57 (15)
C3—C4—C5—C60.3 (3)C9—C10—C11—C1292.3 (2)
C4—C5—C6—C71.1 (3)C9—C10—C11—N286.14 (19)
C5—C6—C7—C80.7 (3)N2—C11—C12—C15178.82 (17)
C6—C7—C8—C30.5 (3)C10—C11—C12—C152.7 (3)
C6—C7—C8—C9172.49 (17)N2—C11—C12—S10.32 (19)
C4—C3—C8—C71.4 (3)C10—C11—C12—S1178.19 (14)
C2—C3—C8—C7177.54 (16)C13—S1—C12—C110.35 (13)
C4—C3—C8—C9171.82 (16)C13—S1—C12—C15179.58 (15)
C2—C3—C8—C99.3 (2)C11—N2—C13—C16179.99 (17)
C7—C8—C9—O333.9 (2)C11—N2—C13—S11.32 (19)
C3—C8—C9—O3153.11 (15)C12—S1—C13—N21.00 (14)
C7—C8—C9—C1156.42 (16)C12—S1—C13—C16179.72 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the C11/C12/S1/C13/N2 thiazol ring, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N2i0.84 (3)2.35 (3)3.174 (2)167 (3)
C10—H10A···O1i0.96 (2)2.39 (2)3.163 (2)138 (2)
C14—H14B···Cg1ii0.97 (3)2.71 (3)3.403 (2)129 (2)
C15—H15B···Cg2iii0.97 (3)2.89 (2)3.537 (2)125.4 (18)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H16N2O3S
Mr316.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.5793 (2), 10.4438 (2), 17.5496 (3)
β (°) 114.304 (1)
V3)1433.09 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.14
Crystal size (mm)0.32 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.546, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
22926, 2343, 2311
Rint0.021
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.135, 1.33
No. of reflections2343
No. of parameters264
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.87, 1.01

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the C11/C12/S1/C13/N2 thiazol ring, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N2i0.84 (3)2.35 (3)3.174 (2)167 (3)
C10—H10A···O1i0.96 (2)2.39 (2)3.163 (2)138 (2)
C14—H14B···Cg1ii0.97 (3)2.71 (3)3.403 (2)129 (2)
C15—H15B···Cg2iii0.97 (3)2.89 (2)3.537 (2)125.4 (18)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+2, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010a). Acta Cryst. E66, o724–o725.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010b). Acta Cryst. E66, o803–o804.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010c). Acta Cryst. E66, o940-o941.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGriesbeck, A. G., Bondock, S. & Lex, J. (2003). J. Org. Chem. 68, 9899–9906.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuau, R. & Villatoro, E. P. de I. (1994). Tetrahedron, 50, 4987–4994.  CrossRef CAS Web of Science Google Scholar
First citationWang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed. 26, 679–689.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Y., Qian, S.-P., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett. 41, 8141–8145.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-H. (2004). Org. Lett. 6, 4893–4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o964-o965
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds