metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m361-m362

Di­aqua­bis­(4-methyl­benzoato-κO)bis­­(nicotinamide-κN1)nickel(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 25 February 2010; accepted 26 February 2010; online 3 March 2010)

The title NiII complex, [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], is centrosymmetric with the Ni atom located on an inversion center. The mol­ecule contains two 4-methyl­benzoate (PMB) and two nicotinamide (NA) ligands and two coordinated water mol­ecules, all ligands being monodentate. The four O atoms in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 26.15 (10)°, while the pyridine and benzene rings are oriented at a dihedral angle of 87.81 (4)°. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. The ππ contact between the benzene rings [centroid–centroid distance = 3.896 (1) Å] may further stabilize the crystal structure. A weak C—H⋯π inter­action involving the pyridine ring also occurs.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513-m514.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7O2)2(C6H6N2O)2(H2O)2]

  • Mr = 609.26

  • Triclinic, [P \overline 1]

  • a = 7.7324 (2) Å

  • b = 9.7335 (3) Å

  • c = 9.8198 (3) Å

  • α = 78.440 (2)°

  • β = 86.475 (3)°

  • γ = 71.662 (2)°

  • V = 687.31 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 99 K

  • 0.33 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.934

  • 12002 measured reflections

  • 3390 independent reflections

  • 3034 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.068

  • S = 1.05

  • 3390 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0621 (10)
Ni1—O4 2.0870 (10)
Ni1—N1 2.0859 (12)

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N1/C9–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O2i 0.86 (2) 2.037 (19) 2.8333 (18) 153.4 (19)
N2—H22⋯O3ii 0.90 (2) 2.05 (2) 2.9192 (19) 161.5 (18)
O4—H41⋯O3iii 0.81 (2) 2.10 (2) 2.8864 (16) 162.9 (19)
O4—H42⋯O2iv 0.89 (2) 1.75 (2) 2.6240 (16) 165 (2)
C6—H6⋯Cg2v 0.93 2.65 3.5737 (18) 171
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title complex, (I), is a crystallographically centrosymmetric mononuclear complex, consisting of two nicotinamide (NA) and two 4-methylbenzoate (PMB) ligands and two coordinated water molecules. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (V) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VI) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in the other structures all ligands being monodentate.

The title complex, [Ni(PMB)2(NA)2(H2O)2], has a centre of symmetry and NiII ion is surrounded by two PMB and two NA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1).

The near equality of the C1—O1 [1.2678 (17) Å] and C1—O2 [1.2654 (17) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Ni—O bond length is 2.0746 (10) Å (Table 1) and the Ni atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.5087 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 26.15 (10)°, while that between rings A and B (N1/C8—C12) is 87.81 (4)°.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg1—Cg1i, [symmetry code (i): 1 - x, -y, 2 - z, where Cg1 is the centroid of ring A (C2—C7)] may further stabilize the structure, with centroid-centroid distance of 3.896 (1) Å. There also exists a weak C—H···π interaction involving the pyridine ring (Table 2).

Related literature top

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998).

Experimental top

The title compound was prepared by the reaction of NiSO4.6(H2O) (1.32 g, 5 mmol) in H2O (30 ml) and NA (1.22 g, 10 mmol) in H2O (15 ml) with sodium 4-methylbenzoate (1.36 g, 10 mmol) in H2O (300 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H21, H22 (for NH2) and H41, H42 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, 1 - z.
Diaquabis(4-methylbenzoato-κO)bis(nicotinamide-κN1)nickel(II) top
Crystal data top
[Ni(C8H7O2)2(C6H6N2O)2(H2O)2]Z = 1
Mr = 609.26F(000) = 318
Triclinic, P1Dx = 1.472 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7324 (2) ÅCell parameters from 6458 reflections
b = 9.7335 (3) Åθ = 2.8–28.3°
c = 9.8198 (3) ŵ = 0.76 mm1
α = 78.440 (2)°T = 99 K
β = 86.475 (3)°Prism, blue
γ = 71.662 (2)°0.33 × 0.28 × 0.25 mm
V = 687.31 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3390 independent reflections
Radiation source: fine-focus sealed tube3034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.889, Tmax = 0.934k = 1212
12002 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0238P)2 + 0.4565P]
where P = (Fo2 + 2Fc2)/3
3390 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ni(C8H7O2)2(C6H6N2O)2(H2O)2]γ = 71.662 (2)°
Mr = 609.26V = 687.31 (4) Å3
Triclinic, P1Z = 1
a = 7.7324 (2) ÅMo Kα radiation
b = 9.7335 (3) ŵ = 0.76 mm1
c = 9.8198 (3) ÅT = 99 K
α = 78.440 (2)°0.33 × 0.28 × 0.25 mm
β = 86.475 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3034 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.934Rint = 0.024
12002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
3390 reflectionsΔρmin = 0.50 e Å3
204 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.50000.00996 (8)
O10.12751 (13)0.01072 (11)0.67419 (11)0.0129 (2)
O20.11125 (14)0.15789 (11)0.77116 (11)0.0149 (2)
O30.44171 (14)0.33247 (11)0.48634 (12)0.0177 (2)
O40.25984 (15)0.07089 (12)0.41538 (12)0.0136 (2)
H410.342 (3)0.137 (2)0.458 (2)0.034 (6)*
H420.228 (3)0.103 (2)0.345 (2)0.036 (6)*
N10.00159 (16)0.21391 (13)0.41144 (13)0.0116 (2)
N20.33786 (19)0.55995 (15)0.35530 (15)0.0176 (3)
H210.252 (3)0.628 (2)0.307 (2)0.022 (5)*
H220.425 (3)0.586 (2)0.390 (2)0.024 (5)*
C10.05766 (19)0.09453 (16)0.75988 (15)0.0120 (3)
C20.18258 (19)0.12691 (15)0.85126 (15)0.0121 (3)
C30.3601 (2)0.12032 (16)0.81040 (16)0.0139 (3)
H30.40700.08510.73020.017*
C40.4678 (2)0.16598 (16)0.88863 (16)0.0153 (3)
H40.58550.16240.85930.018*
C50.4019 (2)0.21690 (17)1.00998 (17)0.0162 (3)
C60.2262 (2)0.21841 (18)1.05279 (17)0.0192 (3)
H60.18160.24881.13560.023*
C70.1171 (2)0.17547 (17)0.97424 (16)0.0164 (3)
H70.00060.17901.00370.020*
C80.5187 (2)0.26752 (19)1.09414 (19)0.0239 (4)
H8A0.45560.36641.10630.036*
H8B0.63140.26511.04630.036*
H8C0.54350.20331.18340.036*
C90.13817 (19)0.31071 (16)0.33131 (16)0.0140 (3)
H90.23850.28230.31630.017*
C100.1356 (2)0.45107 (17)0.27015 (17)0.0169 (3)
H100.23260.51570.21530.020*
C110.0139 (2)0.49377 (16)0.29208 (16)0.0156 (3)
H110.01880.58750.25210.019*
C120.15612 (19)0.39452 (16)0.37462 (15)0.0121 (3)
C130.14248 (19)0.25568 (16)0.43189 (15)0.0115 (3)
H130.23780.18880.48690.014*
C140.32352 (19)0.42736 (16)0.40920 (16)0.0131 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00972 (13)0.00810 (13)0.01255 (14)0.00273 (10)0.00152 (9)0.00267 (10)
O10.0132 (5)0.0108 (5)0.0144 (5)0.0023 (4)0.0020 (4)0.0036 (4)
O20.0120 (5)0.0152 (5)0.0175 (6)0.0027 (4)0.0015 (4)0.0050 (4)
O30.0162 (5)0.0107 (5)0.0257 (6)0.0035 (4)0.0068 (4)0.0016 (5)
O40.0114 (5)0.0124 (5)0.0163 (6)0.0018 (4)0.0020 (4)0.0038 (5)
N10.0122 (6)0.0100 (6)0.0128 (6)0.0029 (5)0.0008 (5)0.0035 (5)
N20.0172 (7)0.0113 (6)0.0254 (8)0.0066 (5)0.0074 (6)0.0003 (6)
C10.0134 (7)0.0098 (7)0.0124 (7)0.0044 (5)0.0023 (5)0.0010 (5)
C20.0132 (7)0.0087 (6)0.0133 (7)0.0021 (5)0.0032 (5)0.0007 (5)
C30.0157 (7)0.0130 (7)0.0124 (7)0.0033 (6)0.0010 (5)0.0028 (6)
C40.0135 (7)0.0139 (7)0.0179 (8)0.0040 (6)0.0021 (6)0.0014 (6)
C50.0180 (7)0.0116 (7)0.0182 (8)0.0024 (6)0.0062 (6)0.0027 (6)
C60.0193 (8)0.0224 (8)0.0162 (8)0.0028 (6)0.0002 (6)0.0101 (7)
C70.0132 (7)0.0185 (8)0.0167 (8)0.0030 (6)0.0003 (6)0.0046 (6)
C80.0219 (8)0.0243 (9)0.0285 (10)0.0062 (7)0.0070 (7)0.0111 (7)
C90.0116 (7)0.0140 (7)0.0173 (8)0.0039 (6)0.0022 (6)0.0045 (6)
C100.0146 (7)0.0126 (7)0.0207 (8)0.0008 (6)0.0058 (6)0.0003 (6)
C110.0173 (7)0.0092 (7)0.0199 (8)0.0040 (6)0.0024 (6)0.0013 (6)
C120.0129 (7)0.0102 (7)0.0138 (7)0.0028 (5)0.0005 (5)0.0050 (6)
C130.0122 (6)0.0103 (7)0.0120 (7)0.0025 (5)0.0019 (5)0.0030 (5)
C140.0141 (7)0.0118 (7)0.0142 (7)0.0032 (6)0.0000 (5)0.0053 (6)
Geometric parameters (Å, º) top
Ni1—O12.0621 (10)C4—C51.389 (2)
Ni1—O1i2.0621 (10)C4—H40.9300
Ni1—O4i2.0870 (10)C5—C61.394 (2)
Ni1—O42.0870 (10)C5—C81.509 (2)
Ni1—N12.0859 (12)C6—H60.9300
Ni1—N1i2.0859 (12)C7—C21.393 (2)
O1—C11.2678 (17)C7—C61.383 (2)
O2—C11.2654 (17)C7—H70.9300
O3—C141.2392 (18)C8—H8A0.9600
O4—H410.81 (2)C8—H8B0.9600
O4—H420.88 (2)C8—H8C0.9600
N1—C91.3421 (19)C9—C101.383 (2)
N1—C131.3386 (18)C9—H90.9300
N2—C141.3294 (19)C10—H100.9300
N2—H210.86 (2)C11—C101.388 (2)
N2—H220.89 (2)C11—H110.9300
C1—C21.500 (2)C12—C111.388 (2)
C2—C31.392 (2)C12—C131.390 (2)
C3—H30.9300C13—H130.9300
C4—C31.389 (2)C14—C121.500 (2)
O1i—Ni1—O1180.0C5—C4—C3120.87 (14)
O1—Ni1—O486.71 (4)C5—C4—H4119.6
O1i—Ni1—O493.29 (4)C4—C5—C6118.33 (14)
O1—Ni1—O4i93.29 (4)C4—C5—C8120.73 (14)
O1i—Ni1—O4i86.71 (4)C6—C5—C8120.93 (14)
O1—Ni1—N189.94 (4)C5—C6—H6119.4
O1i—Ni1—N190.06 (4)C7—C6—C5121.11 (14)
O1—Ni1—N1i90.06 (4)C7—C6—H6119.4
O1i—Ni1—N1i89.94 (4)C2—C7—H7119.8
O4i—Ni1—O4180.0C6—C7—C2120.34 (14)
N1—Ni1—O486.75 (4)C6—C7—H7119.8
N1i—Ni1—O493.25 (4)C5—C8—H8A109.5
N1—Ni1—O4i93.25 (4)C5—C8—H8B109.5
N1i—Ni1—O4i86.75 (4)C5—C8—H8C109.5
N1i—Ni1—N1180.0H8A—C8—H8B109.5
C1—O1—Ni1125.51 (9)H8A—C8—H8C109.5
Ni1—O4—H41122.0 (15)H8B—C8—H8C109.5
Ni1—O4—H4297.1 (14)N1—C9—C10122.60 (14)
H42—O4—H41108 (2)N1—C9—H9118.7
C9—N1—Ni1123.09 (10)C10—C9—H9118.7
C13—N1—Ni1118.67 (10)C9—C10—C11118.88 (14)
C13—N1—C9118.21 (12)C9—C10—H10120.6
C14—N2—H21122.3 (13)C11—C10—H10120.6
C14—N2—H22117.1 (12)C10—C11—C12119.04 (14)
H21—N2—H22118.3 (18)C10—C11—H11120.5
O1—C1—C2118.42 (13)C12—C11—H11120.5
O2—C1—O1124.67 (14)C11—C12—C13118.29 (13)
O2—C1—C2116.86 (13)C11—C12—C14124.54 (13)
C3—C2—C1121.08 (13)C13—C12—C14117.16 (13)
C3—C2—C7118.83 (14)N1—C13—C12122.98 (13)
C7—C2—C1119.91 (13)N1—C13—H13118.5
C2—C3—H3119.8C12—C13—H13118.5
C4—C3—C2120.46 (14)O3—C14—N2122.43 (14)
C4—C3—H3119.8O3—C14—C12119.86 (13)
C3—C4—H4119.6N2—C14—C12117.70 (13)
O4—Ni1—O1—C1153.43 (11)O2—C1—C2—C723.4 (2)
O4i—Ni1—O1—C126.57 (11)C1—C2—C3—C4172.95 (13)
N1—Ni1—O1—C166.68 (11)C7—C2—C3—C42.1 (2)
N1i—Ni1—O1—C1113.32 (11)C5—C4—C3—C21.0 (2)
O1—Ni1—N1—C9144.39 (11)C3—C4—C5—C61.2 (2)
O1i—Ni1—N1—C935.61 (11)C3—C4—C5—C8179.53 (14)
O1—Ni1—N1—C1337.62 (11)C4—C5—C6—C72.3 (2)
O1i—Ni1—N1—C13142.38 (11)C8—C5—C6—C7178.42 (15)
O4—Ni1—N1—C9128.90 (12)C6—C7—C2—C1174.10 (14)
O4i—Ni1—N1—C951.10 (12)C6—C7—C2—C31.0 (2)
O4—Ni1—N1—C1349.10 (11)C2—C7—C6—C51.2 (2)
O4i—Ni1—N1—C13130.90 (11)N1—C9—C10—C110.1 (2)
Ni1—O1—C1—O217.6 (2)C12—C11—C10—C90.0 (2)
Ni1—O1—C1—C2159.77 (9)C13—C12—C11—C100.1 (2)
Ni1—N1—C9—C10178.28 (11)C14—C12—C11—C10178.64 (14)
C13—N1—C9—C100.3 (2)C11—C12—C13—N10.3 (2)
Ni1—N1—C13—C12178.46 (11)C14—C12—C13—N1178.56 (13)
C9—N1—C13—C120.4 (2)O3—C14—C12—C11178.48 (14)
O1—C1—C2—C326.1 (2)O3—C14—C12—C130.3 (2)
O1—C1—C2—C7158.94 (14)N2—C14—C12—C111.1 (2)
O2—C1—C2—C3151.54 (14)N2—C14—C12—C13179.83 (13)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N1/C9–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O2ii0.86 (2)2.037 (19)2.8333 (18)153.4 (19)
N2—H22···O3iii0.90 (2)2.05 (2)2.9192 (19)161.5 (18)
O4—H41···O3iv0.81 (2)2.10 (2)2.8864 (16)162.9 (19)
O4—H42···O2i0.89 (2)1.75 (2)2.6240 (16)165 (2)
C6—H6···Cg2v0.932.653.5737 (18)171
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O2)2(C6H6N2O)2(H2O)2]
Mr609.26
Crystal system, space groupTriclinic, P1
Temperature (K)99
a, b, c (Å)7.7324 (2), 9.7335 (3), 9.8198 (3)
α, β, γ (°)78.440 (2), 86.475 (3), 71.662 (2)
V3)687.31 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.33 × 0.28 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.889, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
12002, 3390, 3034
Rint0.024
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 1.05
No. of reflections3390
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O12.0621 (10)Ni1—N12.0859 (12)
Ni1—O42.0870 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N1/C9–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O2i0.86 (2)2.037 (19)2.8333 (18)153.4 (19)
N2—H22···O3ii0.90 (2)2.05 (2)2.9192 (19)161.5 (18)
O4—H41···O3iii0.81 (2)2.10 (2)2.8864 (16)162.9 (19)
O4—H42···O2iv0.89 (2)1.75 (2)2.6240 (16)165 (2)
C6—H6···Cg2v0.932.653.5737 (18)171
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x, y, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m361-m362
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds