metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m448-m449

Di­aqua­bis­(4-methyl­amino­benzoato-κO)bis­­(nicotinamide-κN1)cobalt(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 12 March 2010; accepted 22 March 2010; online 27 March 2010)

The asymmetric unit of the title CoII complex, [Co(C8H8NO2)2(C6H6N2O)2(H2O)2], contains two half complex mol­ecules with similar structures. The CoII atoms are each located on an inversion center and each is coordinated by two 4-methyl­amino­benzoate (PMAB), two nicotinamide (NA) ligands and two water mol­ecules in a distorted octa­hedral coordination. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 3.0 (3) and 2.54 (19)°, while the pyridine and benzene rings are oriented at dihedral angles of 67.40 (8) and 66.25 (8)°. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.]); Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513-m514.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607-m608.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H8NO2)2(C6H6N2O)2(H2O)2]

  • Mr = 639.53

  • Triclinic, [P \overline 1]

  • a = 9.9014 (7) Å

  • b = 11.2891 (8) Å

  • c = 14.1824 (9) Å

  • α = 107.554 (5)°

  • β = 92.975 (4)°

  • γ = 92.836 (4)°

  • V = 1505.89 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 294 K

  • 0.31 × 0.14 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.934

  • 25128 measured reflections

  • 7337 independent reflections

  • 3927 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.120

  • S = 0.99

  • 7337 reflections

  • 433 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0553 (17)
Co1—O4 2.088 (2)
Co1—N2 2.153 (2)
Co2—O5 2.0696 (18)
Co2—O8 2.129 (2)
Co2—N5 2.159 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O7i 0.88 (2) 1.75 (2) 2.618 (4) 173 (4)
O4—H42⋯O2ii 0.89 (4) 1.86 (4) 2.644 (3) 146 (4)
O8—H81⋯O3iii 0.91 (2) 1.84 (2) 2.742 (3) 173 (3)
O8—H82⋯O6iv 0.94 (3) 1.76 (3) 2.648 (3) 156 (3)
N3—H32⋯O2v 0.91 (3) 2.04 (3) 2.939 (4) 168 (3)
N4—H4A⋯O4v 0.88 (4) 2.53 (4) 3.288 (4) 145 (3)
N6—H61⋯O6vi 0.90 (3) 2.08 (3) 2.973 (4) 169 (3)
N6—H62⋯O3i 0.88 (3) 2.36 (3) 3.124 (4) 146 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+2, -y+2, -z; (v) -x+2, -y+1, -z+1; (vi) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title complex, (I), contains two half molecules with Co atoms on inversion centers. Each molecule contains two 4-methylaminobenzoate (PMAB) and two nicotinamide (NA) ligands and two coordinated water molecules, all ligands being monodentate. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (V) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VI) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in the other structures all ligands being monodentate.

Each of the two molecules in the asymmetric unit of the title complex, [Co(PMAB)2(NA)2(H2O)2], has a centre of symmetry and CoII ion is surrounded by two PMAB and two NA ligands and two water molecules (Fig. 1). All ligands are monodentate. In each molecule, the four O atoms (O1, O4, O1', O4' and O5, O8, O5'', o8'') in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N2, N2' and N5, N5'') in the axial positions (Fig. 1).

The near equality of the C1—O1 [1.274 (3) Å], C1—O2 [1.255 (3) Å] and C15—O5 [1.276 (3) Å], C15—O6 [1.262 (3) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Co—O bond lengths are 2.0717 (19) and 2.0993 (19) Å (Table 1) and the Co atoms are displaced out of the least-squares planes of the carboxylate groups [(O1/C1/O2) and (O5/C15/O6)] by -0.4948 (1) and -0.3495 (1) Å, respectively. The dihedral angles between the planar carboxylate groups and the benzene rings A (C2—C7) and C (C16—C21) are 2.96 (27)° and 2.54 (19)°, respectively, while that between rings A and B (N2/C9—C13) and C and D (N5/C23—C27) are 67.40 (8) and 66.25 (8)°, respectively.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure.

Related literature top

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996); Hökelek & Necefoğlu (1998); Hökelek et al. (2009a,b,c).

Experimental top

The title compound was prepared by the reaction of CoSO4.7(H2O) (1.41 g, 5 mmol) in H2O (30 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-methylaminobenzoate (1.74 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving orange single crystals.

Refinement top

Atoms H1, H4A (for NH), H31, H32, H61, H62 (for NH2) and H41, H42, H81, H82 (for H2O) were located in a difference Fourier map and refined isotropically, with restrains of N3—H31 = 0.870 (19), N3—H32 = 0.909 (19), N4—H4A = 0.87 (2), N6—H61 = 0.904 (19), N6—H62 = 0.878 (19), O4—H41 = 0.876 (17), O4—H42 = 0.89 (4), O8—H81 = 0.907 (14), O8—H82 = 0.932 (18) Å and H41—O4—H42 = 106 (3) and H81—O8—H82 = 106 (2)°. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operators:(') 1 - x, 1 - y, 1 - z; ('') 2 - x, 2 - y, -z.
Diaquabis(4-methylaminobenzoato-κO)bis(nicotinamide- κN1)cobalt(II) top
Crystal data top
[Co(C8H8NO2)2(C6H6N2O)2(H2O)2]Z = 2
Mr = 639.53F(000) = 666
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9014 (7) ÅCell parameters from 4808 reflections
b = 11.2891 (8) Åθ = 2.5–22.9°
c = 14.1824 (9) ŵ = 0.63 mm1
α = 107.554 (5)°T = 294 K
β = 92.975 (4)°Block, orange
γ = 92.836 (4)°0.31 × 0.14 × 0.11 mm
V = 1505.89 (18) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7337 independent reflections
Radiation source: fine-focus sealed tube3927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1013
Tmin = 0.889, Tmax = 0.934k = 1415
25128 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
7337 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.44 e Å3
11 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Co(C8H8NO2)2(C6H6N2O)2(H2O)2]γ = 92.836 (4)°
Mr = 639.53V = 1505.89 (18) Å3
Triclinic, P1Z = 2
a = 9.9014 (7) ÅMo Kα radiation
b = 11.2891 (8) ŵ = 0.63 mm1
c = 14.1824 (9) ÅT = 294 K
α = 107.554 (5)°0.31 × 0.14 × 0.11 mm
β = 92.975 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7337 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3927 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.934Rint = 0.050
25128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04711 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.44 e Å3
7337 reflectionsΔρmin = 0.64 e Å3
433 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.03935 (17)
Co21.00001.00000.00000.03728 (17)
O10.56594 (18)0.56020 (18)0.38612 (14)0.0449 (5)
O20.71996 (19)0.7140 (2)0.46562 (16)0.0532 (6)
O30.8902 (2)0.2578 (2)0.27847 (16)0.0663 (7)
O40.4510 (3)0.3195 (2)0.40609 (19)0.0673 (7)
H410.447 (4)0.285 (3)0.3417 (13)0.095 (14)*
H420.383 (3)0.283 (4)0.428 (3)0.135 (18)*
O51.07631 (18)0.95050 (19)0.12042 (14)0.0472 (5)
O61.1978 (2)0.7922 (2)0.04475 (15)0.0528 (6)
O70.5387 (3)0.7866 (4)0.21529 (18)0.1282 (14)
O80.98305 (19)1.1857 (2)0.09213 (16)0.0472 (5)
H810.958 (3)1.207 (3)0.1553 (12)0.083 (12)*
H820.918 (3)1.215 (3)0.056 (2)0.104 (15)*
N10.8652 (4)0.6271 (3)0.0185 (3)0.0932 (13)
H10.931 (4)0.680 (4)0.027 (3)0.101 (16)*
N20.7005 (2)0.4443 (2)0.52402 (18)0.0444 (6)
N31.0849 (3)0.2554 (3)0.3640 (2)0.0585 (8)
H311.122 (3)0.222 (3)0.3086 (17)0.072 (12)*
H321.135 (3)0.264 (3)0.4217 (18)0.075 (12)*
N41.3862 (4)0.8673 (3)0.4966 (2)0.0738 (9)
H4A1.441 (4)0.808 (3)0.495 (3)0.125 (19)*
N50.7987 (2)0.9412 (2)0.02697 (17)0.0395 (6)
N60.3613 (3)0.7723 (3)0.1287 (2)0.0589 (8)
H610.322 (3)0.782 (4)0.0709 (19)0.097 (15)*
H620.313 (3)0.739 (3)0.1852 (18)0.094 (14)*
C10.6647 (3)0.6378 (3)0.3879 (2)0.0394 (7)
C20.7153 (3)0.6358 (3)0.2905 (2)0.0407 (7)
C30.8201 (3)0.7192 (3)0.2835 (2)0.0469 (8)
H30.85710.77930.34070.056*
C40.8694 (3)0.7144 (3)0.1946 (3)0.0557 (9)
H40.94040.77040.19250.067*
C50.8157 (4)0.6279 (3)0.1075 (3)0.0608 (9)
C60.7106 (4)0.5444 (3)0.1136 (2)0.0702 (11)
H60.67310.48470.05640.084*
C70.6619 (3)0.5501 (3)0.2042 (2)0.0581 (9)
H70.59100.49430.20680.070*
C80.8172 (6)0.5427 (5)0.0756 (3)0.130 (2)
H8A0.86740.56000.12660.194*
H8B0.72270.55240.08800.194*
H8C0.82900.45880.07560.194*
C90.7586 (3)0.4567 (3)0.6138 (2)0.0510 (8)
H90.71260.49490.66940.061*
C100.8847 (3)0.4149 (3)0.6270 (2)0.0586 (9)
H100.92280.42540.69050.070*
C110.9534 (3)0.3580 (3)0.5463 (2)0.0504 (8)
H111.03870.33000.55440.060*
C120.8947 (3)0.3427 (3)0.4525 (2)0.0372 (7)
C130.7679 (3)0.3875 (3)0.4461 (2)0.0427 (7)
H130.72730.37710.38330.051*
C140.9565 (3)0.2822 (3)0.3585 (2)0.0434 (7)
C151.1621 (3)0.8704 (3)0.1220 (2)0.0412 (7)
C161.2203 (3)0.8699 (3)0.2201 (2)0.0392 (7)
C171.3176 (3)0.7886 (3)0.2286 (2)0.0444 (7)
H171.34640.73290.17160.053*
C181.3718 (3)0.7889 (3)0.3193 (2)0.0506 (8)
H181.43720.73380.32270.061*
C191.3313 (3)0.8698 (3)0.4065 (2)0.0512 (8)
C201.2335 (3)0.9511 (3)0.3987 (2)0.0610 (9)
H201.20431.00650.45560.073*
C211.1798 (3)0.9499 (3)0.3069 (2)0.0542 (8)
H211.11411.00460.30330.065*
C221.3480 (4)0.9441 (4)0.5901 (3)0.0900 (13)
H22A1.39680.92340.64260.135*
H22B1.25240.93050.59460.135*
H22C1.36931.03000.59590.135*
C230.7582 (3)0.9468 (3)0.1165 (2)0.0473 (8)
H230.81860.98120.17160.057*
C240.6309 (3)0.9038 (3)0.1305 (2)0.0555 (9)
H240.60690.90800.19390.067*
C250.5397 (3)0.8547 (3)0.0506 (2)0.0500 (8)
H250.45250.82690.05900.060*
C260.5796 (3)0.8473 (3)0.0430 (2)0.0413 (7)
C270.7095 (3)0.8909 (3)0.0501 (2)0.0423 (7)
H270.73700.88500.11300.051*
C280.4910 (3)0.7982 (3)0.1358 (2)0.0597 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0366 (3)0.0502 (4)0.0358 (3)0.0086 (3)0.0118 (2)0.0174 (3)
Co20.0287 (3)0.0528 (4)0.0361 (3)0.0039 (2)0.0022 (2)0.0220 (3)
O10.0377 (11)0.0619 (13)0.0409 (12)0.0003 (10)0.0061 (9)0.0244 (11)
O20.0475 (13)0.0688 (15)0.0435 (13)0.0024 (11)0.0024 (10)0.0185 (12)
O30.0491 (13)0.1049 (19)0.0384 (13)0.0182 (13)0.0002 (11)0.0104 (13)
O40.0795 (18)0.0634 (16)0.0509 (17)0.0046 (13)0.0278 (14)0.0030 (14)
O50.0372 (11)0.0688 (14)0.0457 (13)0.0121 (10)0.0036 (9)0.0312 (11)
O60.0536 (13)0.0680 (15)0.0419 (13)0.0137 (11)0.0028 (11)0.0229 (12)
O70.091 (2)0.226 (4)0.0340 (15)0.069 (2)0.0089 (14)0.001 (2)
O80.0396 (12)0.0611 (14)0.0403 (13)0.0042 (10)0.0031 (10)0.0140 (12)
N10.137 (3)0.079 (3)0.060 (2)0.028 (2)0.047 (2)0.015 (2)
N20.0420 (14)0.0562 (16)0.0387 (15)0.0089 (12)0.0067 (12)0.0188 (13)
N30.0435 (17)0.078 (2)0.048 (2)0.0220 (15)0.0064 (16)0.0084 (17)
N40.107 (3)0.070 (2)0.0462 (19)0.017 (2)0.0184 (18)0.0227 (17)
N50.0330 (13)0.0517 (15)0.0356 (14)0.0027 (11)0.0041 (11)0.0158 (12)
N60.0455 (18)0.073 (2)0.049 (2)0.0099 (15)0.0066 (16)0.0087 (17)
C10.0327 (16)0.0487 (19)0.0444 (19)0.0144 (14)0.0059 (14)0.0233 (16)
C20.0422 (17)0.0439 (18)0.0419 (18)0.0071 (14)0.0093 (14)0.0204 (15)
C30.0459 (18)0.0496 (19)0.0495 (19)0.0011 (14)0.0016 (15)0.0224 (16)
C40.054 (2)0.061 (2)0.060 (2)0.0080 (16)0.0127 (17)0.0312 (19)
C50.084 (3)0.052 (2)0.052 (2)0.0005 (18)0.0278 (19)0.0217 (18)
C60.105 (3)0.055 (2)0.045 (2)0.020 (2)0.022 (2)0.0087 (18)
C70.068 (2)0.055 (2)0.050 (2)0.0122 (17)0.0185 (17)0.0154 (18)
C80.215 (6)0.108 (4)0.057 (3)0.038 (4)0.054 (3)0.012 (3)
C90.052 (2)0.066 (2)0.0403 (19)0.0103 (16)0.0120 (16)0.0213 (17)
C100.054 (2)0.083 (3)0.041 (2)0.0130 (18)0.0018 (16)0.0220 (19)
C110.0420 (18)0.065 (2)0.047 (2)0.0130 (15)0.0002 (15)0.0199 (17)
C120.0331 (15)0.0448 (17)0.0357 (17)0.0051 (13)0.0026 (13)0.0149 (14)
C130.0405 (17)0.057 (2)0.0330 (17)0.0088 (14)0.0019 (14)0.0163 (15)
C140.0361 (17)0.0513 (19)0.0422 (19)0.0084 (14)0.0035 (15)0.0123 (16)
C150.0321 (16)0.053 (2)0.0464 (19)0.0002 (14)0.0020 (14)0.0266 (17)
C160.0391 (16)0.0417 (17)0.0414 (18)0.0016 (13)0.0041 (14)0.0208 (15)
C170.0459 (17)0.0493 (19)0.0418 (18)0.0056 (14)0.0030 (14)0.0193 (15)
C180.0485 (19)0.053 (2)0.056 (2)0.0137 (15)0.0057 (16)0.0263 (18)
C190.062 (2)0.050 (2)0.044 (2)0.0020 (16)0.0131 (17)0.0217 (17)
C200.084 (3)0.057 (2)0.041 (2)0.0205 (19)0.0042 (18)0.0108 (17)
C210.064 (2)0.051 (2)0.049 (2)0.0187 (16)0.0065 (17)0.0167 (17)
C220.134 (4)0.087 (3)0.046 (2)0.007 (3)0.020 (2)0.021 (2)
C230.0425 (18)0.065 (2)0.0356 (17)0.0014 (15)0.0003 (14)0.0192 (16)
C240.0474 (19)0.088 (3)0.0362 (18)0.0034 (18)0.0104 (15)0.0261 (18)
C250.0361 (17)0.068 (2)0.0447 (19)0.0073 (15)0.0085 (15)0.0170 (17)
C260.0357 (16)0.0489 (18)0.0381 (17)0.0016 (13)0.0039 (13)0.0120 (15)
C270.0402 (17)0.0529 (19)0.0339 (17)0.0028 (14)0.0089 (14)0.0125 (15)
C280.055 (2)0.071 (2)0.043 (2)0.0177 (18)0.0018 (17)0.0048 (18)
Geometric parameters (Å, º) top
Co1—O12.0553 (17)C3—H30.9300
Co1—O1i2.0553 (17)C4—C51.384 (4)
Co1—O42.088 (2)C4—H40.9300
Co1—O4i2.088 (2)C5—C61.392 (4)
Co1—N22.153 (2)C6—C71.381 (4)
Co1—N2i2.153 (2)C6—H60.9300
Co2—O52.0696 (18)C7—H70.9300
Co2—O5ii2.0696 (18)C8—H8A0.9600
Co2—O82.129 (2)C8—H8B0.9600
Co2—O8ii2.129 (2)C8—H8C0.9600
Co2—N52.159 (2)C9—H90.9300
Co2—N5ii2.159 (2)C10—C91.380 (4)
O1—C11.274 (3)C10—H100.9300
O2—C11.255 (3)C11—C101.366 (4)
O3—C141.229 (3)C11—H110.9300
O4—H410.876 (17)C12—C111.381 (4)
O4—H420.89 (4)C12—C141.481 (4)
O5—C151.276 (3)C13—C121.385 (4)
O6—C151.262 (3)C13—H130.9300
O7—C281.218 (4)C15—C161.479 (4)
O8—H810.907 (14)C16—C171.389 (4)
O8—H820.932 (18)C16—C211.382 (4)
N1—C51.376 (4)C17—C181.365 (4)
N1—C81.428 (5)C17—H170.9300
N1—H10.84 (4)C18—C191.389 (4)
N2—C91.335 (3)C18—H180.9300
N2—C131.330 (3)C19—C201.389 (4)
N3—C141.325 (4)C20—C211.375 (4)
N3—H310.870 (19)C20—H200.9300
N3—H320.909 (19)C21—H210.9300
N4—C191.371 (4)C22—H22A0.9600
N4—C221.430 (5)C22—H22B0.9600
N4—H4A0.87 (2)C22—H22C0.9600
N5—C231.336 (3)C23—H230.9300
N5—C271.331 (3)C24—C231.373 (4)
N6—C281.319 (4)C24—H240.9300
N6—H610.904 (19)C25—C241.369 (4)
N6—H620.878 (19)C25—H250.9300
C1—C21.488 (4)C26—C251.383 (4)
C2—C31.393 (4)C26—C281.484 (4)
C2—C71.371 (4)C27—C261.374 (4)
C3—C41.362 (4)C27—H270.9300
O1i—Co1—O1180.000 (1)C7—C6—H6119.9
O1—Co1—O492.44 (9)C2—C7—C6121.8 (3)
O1i—Co1—O487.56 (9)C2—C7—H7119.1
O1—Co1—O4i87.56 (9)C6—C7—H7119.1
O1i—Co1—O4i92.44 (9)N1—C8—H8A109.5
O1—Co1—N289.34 (8)N1—C8—H8B109.5
O1i—Co1—N290.66 (8)N1—C8—H8C109.5
O1—Co1—N2i90.66 (8)H8A—C8—H8B109.5
O1i—Co1—N2i89.34 (8)H8A—C8—H8C109.5
O4i—Co1—O4180.00 (9)H8B—C8—H8C109.5
O4—Co1—N288.05 (10)N2—C9—C10122.1 (3)
O4i—Co1—N291.95 (10)N2—C9—H9118.9
O4—Co1—N2i91.95 (10)C10—C9—H9118.9
O4i—Co1—N2i88.05 (10)C9—C10—H10120.1
N2i—Co1—N2180.0C11—C10—C9119.8 (3)
O5ii—Co2—O5180.00 (10)C11—C10—H10120.1
O5—Co2—O890.59 (8)C10—C11—C12119.2 (3)
O5ii—Co2—O889.41 (8)C10—C11—H11120.4
O5—Co2—O8ii89.41 (8)C12—C11—H11120.4
O5ii—Co2—O8ii90.59 (8)C11—C12—C13117.2 (3)
O5—Co2—N589.28 (8)C11—C12—C14125.2 (3)
O5ii—Co2—N590.72 (8)C13—C12—C14117.6 (2)
O5—Co2—N5ii90.72 (8)N2—C13—C12124.2 (3)
O5ii—Co2—N5ii89.28 (8)N2—C13—H13117.9
O8ii—Co2—O8180.00 (12)C12—C13—H13117.9
O8—Co2—N592.47 (8)O3—C14—N3121.5 (3)
O8ii—Co2—N587.53 (8)O3—C14—C12120.8 (3)
O8—Co2—N5ii87.53 (8)N3—C14—C12117.7 (3)
O8ii—Co2—N5ii92.47 (8)O5—C15—C16117.4 (3)
N5—Co2—N5ii180.0O6—C15—O5123.2 (3)
C1—O1—Co1128.64 (18)O6—C15—C16119.4 (3)
Co1—O4—H41134 (2)C17—C16—C15121.3 (3)
Co1—O4—H42111 (3)C21—C16—C17117.2 (3)
H42—O4—H41106 (3)C21—C16—C15121.5 (3)
C15—O5—Co2128.33 (19)C16—C17—H17119.4
Co2—O8—H81125 (2)C18—C17—C16121.1 (3)
Co2—O8—H82103 (2)C18—C17—H17119.4
H81—O8—H82106 (2)C17—C18—C19121.5 (3)
C5—N1—C8124.7 (3)C17—C18—H18119.2
C5—N1—H1111 (3)C19—C18—H18119.2
C8—N1—H1124 (3)N4—C19—C20121.9 (3)
C9—N2—Co1123.3 (2)N4—C19—C18120.3 (3)
C13—N2—Co1119.12 (19)C20—C19—C18117.7 (3)
C13—N2—C9117.5 (2)C19—C20—H20119.9
C14—N3—H31118 (2)C21—C20—C19120.2 (3)
C14—N3—H32124 (2)C21—C20—H20119.9
H31—N3—H32118 (3)C16—C21—H21118.9
C19—N4—C22124.4 (3)C20—C21—C16122.2 (3)
C19—N4—H4A116 (3)C20—C21—H21118.9
C22—N4—H4A119 (3)N4—C22—H22A109.5
C23—N5—Co2124.23 (19)N4—C22—H22B109.5
C27—N5—Co2118.79 (18)N4—C22—H22C109.5
C27—N5—C23116.9 (2)H22A—C22—H22B109.5
C28—N6—H61124 (2)H22A—C22—H22C109.5
C28—N6—H62116 (2)H22B—C22—H22C109.5
H62—N6—H61120 (3)N5—C23—C24122.7 (3)
O1—C1—C2116.6 (3)N5—C23—H23118.7
O2—C1—O1124.1 (3)C24—C23—H23118.7
O2—C1—C2119.3 (3)C23—C24—H24120.2
C3—C2—C1121.4 (3)C25—C24—C23119.6 (3)
C7—C2—C1121.1 (3)C25—C24—H24120.2
C7—C2—C3117.5 (3)C24—C25—C26118.8 (3)
C2—C3—H3119.3C24—C25—H25120.6
C4—C3—C2121.3 (3)C26—C25—H25120.6
C4—C3—H3119.3C25—C26—C28124.6 (3)
C3—C4—C5121.2 (3)C27—C26—C25117.7 (3)
C3—C4—H4119.4C27—C26—C28117.8 (3)
C5—C4—H4119.4N5—C27—C26124.4 (3)
N1—C5—C4120.0 (3)N5—C27—H27117.8
N1—C5—C6122.1 (4)C26—C27—H27117.8
C4—C5—C6117.9 (3)O7—C28—N6122.2 (3)
C5—C6—H6119.9O7—C28—C26119.5 (3)
C7—C6—C5120.2 (3)N6—C28—C26118.3 (3)
O4i—Co1—O1—C136.6 (2)C1—C2—C3—C4177.7 (3)
O4—Co1—O1—C1143.4 (2)C7—C2—C3—C41.1 (4)
N2i—Co1—O1—C1124.6 (2)C1—C2—C7—C6177.9 (3)
N2—Co1—O1—C155.4 (2)C3—C2—C7—C61.0 (5)
O8ii—Co2—O5—C1532.2 (2)C2—C3—C4—C51.1 (5)
O8—Co2—O5—C15147.8 (2)C3—C4—C5—N1178.4 (3)
N5—Co2—O5—C15119.8 (2)C3—C4—C5—C60.8 (5)
N5ii—Co2—O5—C1560.2 (2)N1—C5—C6—C7178.6 (4)
O1i—Co1—N2—C13138.0 (2)C4—C5—C6—C70.6 (5)
O1—Co1—N2—C1342.0 (2)C5—C6—C7—C20.7 (5)
O4i—Co1—N2—C13129.5 (2)C11—C10—C9—N20.4 (5)
O4—Co1—N2—C1350.5 (2)C12—C11—C10—C90.4 (5)
O1i—Co1—N2—C937.7 (2)C13—C12—C11—C100.4 (4)
O1—Co1—N2—C9142.3 (2)C14—C12—C11—C10179.5 (3)
O4i—Co1—N2—C954.8 (2)C11—C12—C14—O3170.4 (3)
O4—Co1—N2—C9125.2 (2)C11—C12—C14—N39.6 (4)
O5ii—Co2—N5—C2733.7 (2)C13—C12—C14—O39.5 (4)
O5—Co2—N5—C27146.3 (2)C13—C12—C14—N3170.5 (3)
O8ii—Co2—N5—C2756.8 (2)N2—C13—C12—C110.4 (4)
O8—Co2—N5—C27123.2 (2)N2—C13—C12—C14179.7 (3)
O5ii—Co2—N5—C23149.3 (2)O5—C15—C16—C17177.9 (2)
O5—Co2—N5—C2330.7 (2)O5—C15—C16—C212.4 (4)
O8ii—Co2—N5—C23120.2 (2)O6—C15—C16—C172.7 (4)
O8—Co2—N5—C2359.8 (2)O6—C15—C16—C21177.0 (3)
Co1—O1—C1—O218.0 (4)C15—C16—C17—C18179.6 (3)
Co1—O1—C1—C2162.07 (17)C21—C16—C17—C180.7 (4)
Co2—O5—C15—O612.4 (4)C15—C16—C21—C20179.6 (3)
Co2—O5—C15—C16168.20 (17)C17—C16—C21—C200.7 (5)
C8—N1—C5—C4179.7 (4)C16—C17—C18—C190.5 (5)
C8—N1—C5—C60.5 (7)C17—C18—C19—N4179.3 (3)
Co1—N2—C9—C10176.9 (2)C17—C18—C19—C200.1 (5)
C13—N2—C9—C101.1 (4)N4—C19—C20—C21179.3 (3)
Co1—N2—C13—C12177.1 (2)C18—C19—C20—C210.1 (5)
C9—N2—C13—C121.1 (4)C19—C20—C21—C160.4 (5)
C22—N4—C19—C18178.1 (3)C25—C24—C23—N51.1 (5)
C22—N4—C19—C201.3 (6)C26—C25—C24—C231.4 (5)
Co2—N5—C23—C24177.3 (2)C27—C26—C25—C240.5 (5)
C27—N5—C23—C240.2 (4)C28—C26—C25—C24179.0 (3)
Co2—N5—C27—C26178.4 (2)C25—C26—C28—O7174.4 (4)
C23—N5—C27—C261.2 (4)C25—C26—C28—N67.8 (5)
O1—C1—C2—C3178.0 (2)C27—C26—C28—O77.1 (5)
O1—C1—C2—C73.1 (4)C27—C26—C28—N6170.7 (3)
O2—C1—C2—C31.9 (4)N5—C27—C26—C250.9 (5)
O2—C1—C2—C7176.9 (3)N5—C27—C26—C28177.7 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O7iii0.88 (2)1.75 (2)2.618 (4)173 (4)
O4—H42···O2i0.89 (4)1.86 (4)2.644 (3)146 (4)
O8—H81···O3iv0.91 (2)1.84 (2)2.742 (3)173 (3)
O8—H82···O6ii0.94 (3)1.76 (3)2.648 (3)156 (3)
N3—H32···O2v0.91 (3)2.04 (3)2.939 (4)168 (3)
N4—H4A···O4v0.88 (4)2.53 (4)3.288 (4)145 (3)
N6—H61···O6vi0.90 (3)2.08 (3)2.973 (4)169 (3)
N6—H62···O3iii0.88 (3)2.36 (3)3.124 (4)146 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x+2, y+1, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C8H8NO2)2(C6H6N2O)2(H2O)2]
Mr639.53
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.9014 (7), 11.2891 (8), 14.1824 (9)
α, β, γ (°)107.554 (5), 92.975 (4), 92.836 (4)
V3)1505.89 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.31 × 0.14 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.889, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
25128, 7337, 3927
Rint0.050
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.120, 0.99
No. of reflections7337
No. of parameters433
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.64

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O12.0553 (17)Co2—O52.0696 (18)
Co1—O42.088 (2)Co2—O82.129 (2)
Co1—N22.153 (2)Co2—N52.159 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O7i0.876 (18)1.747 (19)2.618 (4)173 (4)
O4—H42···O2ii0.89 (4)1.86 (4)2.644 (3)146 (4)
O8—H81···O3iii0.906 (19)1.840 (19)2.742 (3)173 (3)
O8—H82···O6iv0.94 (3)1.76 (3)2.648 (3)156 (3)
N3—H32···O2v0.91 (3)2.04 (3)2.939 (4)168 (3)
N4—H4A···O4v0.88 (4)2.53 (4)3.288 (4)145 (3)
N6—H61···O6vi0.90 (3)2.08 (3)2.973 (4)169 (3)
N6—H62···O3i0.88 (3)2.36 (3)3.124 (4)146 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+2, y+2, z; (v) x+2, y+1, z+1; (vi) x1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was financially supported by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m448-m449
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds