organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-N′-(4-nitro­benzo­yl)thio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, and bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: Sohail262001@yahoo.com

(Received 11 March 2010; accepted 31 March 2010; online 10 April 2010)

In the title compound, C14H17N3O3S, the nitro group is twisted slightly by 2.6 (3)° from the benzene ring plane and the thio­ureido group makes a dihedral angle of 52.06 (4)° with the benzene ring. The cyclo­hexyl ring displays a chair conformation. An intra­molecular N—H⋯O inter­action is present. In the crystal, inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers. ππ inter­actions between inversion-related benzene rings (centroid–centroid distance = 4.044 Å) and C—H⋯π inter­actions (H⋯centroid distance = 3.116 Å) between one methyl­ene cyclo­hexyl H atom and the benzene ring are also present.

Related literature

For general background to the chemistry and biological activity of thio­urea derivatives and their use as organic synthons or as complexing agents, see: Glasser & Doughty (1964[Glasser, A. C. & Doughty, R. M. (1964). J. Pharm. Sci. 53, 40-42.]); Jain & Rao (2003[Jain, V. K. & Rao, J. T. (2003). J. Inst. Chem. (India), 75, 24-26.]); Zeng et al. (2003[Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659.]); Xu et al. (2004[Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217-1222.]); Zheng et al. (2004[Zheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855-6860.]); D'hooghe et al. (2005[D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227-232.]); Saeed et al. (2008[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485.], 2009[Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870-o1871.], 2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N3O3S

  • Mr = 307.37

  • Monoclinic, P 21 /c

  • a = 10.7865 (7) Å

  • b = 6.9218 (4) Å

  • c = 20.6788 (13) Å

  • β = 101.493 (1)°

  • V = 1512.96 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 294 K

  • 0.43 × 0.32 × 0.26 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.943

  • 10042 measured reflections

  • 3683 independent reflections

  • 3177 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.04

  • 3683 reflections

  • 200 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O3 0.817 (17) 1.981 (17) 2.6507 (17) 138.8 (14)
N2—H2N⋯S1i 0.84 (2) 2.67 (2) 3.4999 (12) 171.3 (16)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. Substituted thioureas are an important class of compounds, precursors or intermediates towards the synthesis of a variety of heterocyclic systems such as imidazole-2-thiones (Zeng et al., 2003), 2-imino-1,3-thiazolines (D'hooghe et al., 2005) pyrimidines-2-thione (Jain & Rao, 2003) and (benzothiazolyl)-4-quinazolinones. N-(Substituted phenyl)-N-phenylthioureas and N-(substituted butanoyl)-N-phenylthioureas have been developed. Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, antifungal, anticancer (Saeed et al., 2010) antitubercular, antithyroidal, herbicidal and insecticidal activities and as agrochemicals (Xu et al., 2004), e.g. 1-benzoyl-3-(4,5-disubstituted-pyrimidine-2-yl)-thioureas, which have excellent herbicidal activity (Zheng et al., 2004). Thioureas are also well known chelating agents for transition metals (Saeed et al., 2009). N,N-Dialkyl-N'-benzoyl thioureas act as selective complexing agents for the enrichment of platinum metals even from strongly interfacing matrixes. The complexes of thiourea derivatives also show various biological activities (Glasser & Doughty, 1964). Thiourea derivatives containing the amino functional groups are also used as epoxy crosslinking agents (Saeed et al., 2008, 2009).

The title compound, N-cyclohexyl-N'-(4-nitrobenzoyl)-thiourea, crystallizes in a monoclinic primitive space group, P21/c (#14). Like other analogues, the molecule is not planar. The nitro group, N1/O1/O2, is slightly twisted [2.6 (3)°] from the benzene ring plane (C1···C6). For the he thioureido group, the mean plane defined by C7/O3/N2/C8/S1/N3 is twisted by 52.06 (4)° from the benzene ring plane. The cyclohexyl ring is in the chair form.

Most of the bond lengths in the molecule are within 0.01 Å of the mean and median of comparable bond types in the CSD database.

There are intra-molecular N—H···O H-bond interactions. The intermolecular N—H···S H-bond interactions link the molecules to form dimers in the crystal lattice. There are also π···π interactions between neighbouring benzene rings and C13—H13B···π interactions between the cyclohexyl H atom and the benzene ring in the crystal lattice. The distance between the atom H13B and the centroid of C1···C6 benzene ring is 3.116 Å. The centroid-to-centroid distance of the ring C1···C6 and (C1···C6)* (* symmetry code: 1-x, 1-y, 1-z) is 4.044 Å and the distance between C5* and centroid of C1···C6 is 3.610 Å.

Related literature top

For general background to the chemistry and biological activity of thiourea derivatives and their use as organic synthons or as complexing agents, see: Glasser & Doughty (1964); Jain & Rao (2003); Zeng et al. (2003); Xu et al. (2004); Zheng et al. (2004); D'hooghe et al. (2005); Saeed et al. (2008, 2009, 2010).

Experimental top

A solution of 4-nitrobenzoyl chloride (0.01 mol) in dry acetone (80 ml) was added dropwise to a suspension of ammonium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 45 minutes. After cooling to room temperature, a solution of cyclohexyl amine (0.01 mol) in acetone (25 ml) was added and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The product was recrystallized from ethyl acetate as yellow block crystals.

Refinement top

Although all C-bound H atoms may be found in a difference map, they were placed in geometrical idealized positions, with C—H bond lengths fixed to 0.93, 0.97 and 0.98 Å for phenyl, methylene and methine H atoms, respectively. All C-bound H-atoms were refined using a riding model, with Uiso(H) = 1.2Ueq(carrier C atom). Atoms H2N and H3N, bonded to N2 and N3, were located in a difference map and refined isotropically with free coordinates.

Structure description top

Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. Substituted thioureas are an important class of compounds, precursors or intermediates towards the synthesis of a variety of heterocyclic systems such as imidazole-2-thiones (Zeng et al., 2003), 2-imino-1,3-thiazolines (D'hooghe et al., 2005) pyrimidines-2-thione (Jain & Rao, 2003) and (benzothiazolyl)-4-quinazolinones. N-(Substituted phenyl)-N-phenylthioureas and N-(substituted butanoyl)-N-phenylthioureas have been developed. Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, antifungal, anticancer (Saeed et al., 2010) antitubercular, antithyroidal, herbicidal and insecticidal activities and as agrochemicals (Xu et al., 2004), e.g. 1-benzoyl-3-(4,5-disubstituted-pyrimidine-2-yl)-thioureas, which have excellent herbicidal activity (Zheng et al., 2004). Thioureas are also well known chelating agents for transition metals (Saeed et al., 2009). N,N-Dialkyl-N'-benzoyl thioureas act as selective complexing agents for the enrichment of platinum metals even from strongly interfacing matrixes. The complexes of thiourea derivatives also show various biological activities (Glasser & Doughty, 1964). Thiourea derivatives containing the amino functional groups are also used as epoxy crosslinking agents (Saeed et al., 2008, 2009).

The title compound, N-cyclohexyl-N'-(4-nitrobenzoyl)-thiourea, crystallizes in a monoclinic primitive space group, P21/c (#14). Like other analogues, the molecule is not planar. The nitro group, N1/O1/O2, is slightly twisted [2.6 (3)°] from the benzene ring plane (C1···C6). For the he thioureido group, the mean plane defined by C7/O3/N2/C8/S1/N3 is twisted by 52.06 (4)° from the benzene ring plane. The cyclohexyl ring is in the chair form.

Most of the bond lengths in the molecule are within 0.01 Å of the mean and median of comparable bond types in the CSD database.

There are intra-molecular N—H···O H-bond interactions. The intermolecular N—H···S H-bond interactions link the molecules to form dimers in the crystal lattice. There are also π···π interactions between neighbouring benzene rings and C13—H13B···π interactions between the cyclohexyl H atom and the benzene ring in the crystal lattice. The distance between the atom H13B and the centroid of C1···C6 benzene ring is 3.116 Å. The centroid-to-centroid distance of the ring C1···C6 and (C1···C6)* (* symmetry code: 1-x, 1-y, 1-z) is 4.044 Å and the distance between C5* and centroid of C1···C6 is 3.610 Å.

For general background to the chemistry and biological activity of thiourea derivatives and their use as organic synthons or as complexing agents, see: Glasser & Doughty (1964); Jain & Rao (2003); Zeng et al. (2003); Xu et al. (2004); Zheng et al. (2004); D'hooghe et al. (2005); Saeed et al. (2008, 2009, 2010).

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound, with 30% probability thermal ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The unit cell packing diagram of the title compound, viewed down the a-axis. The cyan dotted lines represent the inter-and intra-molecular H-bonding interactions.
N-Cyclohexyl-N'-(4-nitrobenzoyl)thiourea top
Crystal data top
C14H17N3O3SF(000) = 648
Mr = 307.37Dx = 1.349 Mg m3
Monoclinic, P21/cMelting point: 389 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.7865 (7) ÅCell parameters from 10042 reflections
b = 6.9218 (4) Åθ = 1.9–28.3°
c = 20.6788 (13) ŵ = 0.23 mm1
β = 101.493 (1)°T = 294 K
V = 1512.96 (16) Å3Block, yellow
Z = 40.43 × 0.32 × 0.26 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3683 independent reflections
Radiation source: fine-focus sealed tube3177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.909, Tmax = 0.943k = 95
10042 measured reflectionsl = 2721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.057P)2 + 0.3039P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3683 reflectionsΔρmax = 0.25 e Å3
200 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SAINT (Bruker, 2006), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0071 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H17N3O3SV = 1512.96 (16) Å3
Mr = 307.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7865 (7) ŵ = 0.23 mm1
b = 6.9218 (4) ÅT = 294 K
c = 20.6788 (13) Å0.43 × 0.32 × 0.26 mm
β = 101.493 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3683 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3177 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.943Rint = 0.017
10042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3683 reflectionsΔρmin = 0.20 e Å3
200 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.03975 (3)0.73010 (6)0.436999 (18)0.05209 (13)
O10.47704 (13)0.08216 (19)0.65091 (7)0.0781 (4)
O20.44185 (17)0.3242 (2)0.70892 (8)0.1000 (5)
O30.67743 (10)0.91616 (15)0.49838 (6)0.0595 (3)
N10.48457 (12)0.2530 (2)0.66423 (7)0.0597 (3)
N20.83598 (10)0.70331 (17)0.49038 (5)0.0439 (2)
N30.83313 (11)0.94898 (16)0.41468 (6)0.0474 (3)
C10.55199 (11)0.3817 (2)0.62577 (6)0.0469 (3)
C20.56593 (15)0.5738 (2)0.64356 (7)0.0554 (3)
H20.53470.62110.67920.066*
C30.62757 (15)0.6938 (2)0.60694 (7)0.0543 (3)
H30.63680.82440.61740.065*
C40.67605 (11)0.61980 (19)0.55443 (6)0.0429 (3)
C50.66178 (11)0.42564 (19)0.53834 (6)0.0437 (3)
H50.69510.37660.50350.052*
C60.59808 (12)0.30409 (19)0.57394 (7)0.0461 (3)
H60.58680.17400.56310.055*
C70.72985 (13)0.76095 (18)0.51229 (6)0.0440 (3)
C80.89672 (11)0.80319 (18)0.44630 (6)0.0404 (3)
C90.87497 (12)1.07460 (18)0.36608 (6)0.0450 (3)
H90.96691.09150.37850.054*
C100.81166 (18)1.2697 (2)0.36788 (8)0.0581 (4)
H10A0.83801.32630.41140.070*
H10B0.72061.25260.35980.070*
C110.84568 (19)1.4059 (2)0.31634 (8)0.0675 (4)
H11A0.79971.52620.31680.081*
H11B0.93541.43480.32750.081*
C120.81434 (18)1.3191 (3)0.24797 (8)0.0660 (4)
H12A0.72341.30520.23460.079*
H12B0.84291.40540.21700.079*
C130.87599 (18)1.1253 (3)0.24606 (8)0.0650 (4)
H13A0.96711.14190.25390.078*
H13B0.84921.06950.20250.078*
C140.84263 (16)0.9873 (2)0.29742 (7)0.0567 (4)
H14A0.75290.95810.28660.068*
H14B0.88880.86730.29670.068*
H2N0.8739 (16)0.605 (3)0.5076 (8)0.056 (4)*
H3N0.7671 (16)0.977 (2)0.4261 (8)0.054 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04215 (19)0.0602 (2)0.0569 (2)0.00659 (13)0.01688 (14)0.01451 (15)
O10.0819 (8)0.0661 (8)0.0935 (9)0.0121 (6)0.0350 (7)0.0161 (7)
O20.1244 (13)0.0977 (10)0.1022 (10)0.0046 (9)0.0809 (10)0.0102 (8)
O30.0656 (6)0.0483 (5)0.0731 (7)0.0133 (5)0.0342 (5)0.0136 (5)
N10.0497 (7)0.0726 (9)0.0615 (7)0.0012 (6)0.0222 (6)0.0175 (6)
N20.0459 (5)0.0424 (6)0.0467 (6)0.0050 (4)0.0169 (4)0.0081 (4)
N30.0476 (6)0.0455 (6)0.0535 (6)0.0053 (5)0.0207 (5)0.0107 (5)
C10.0406 (6)0.0552 (7)0.0471 (6)0.0039 (5)0.0143 (5)0.0114 (6)
C20.0654 (8)0.0587 (8)0.0488 (7)0.0079 (7)0.0275 (6)0.0022 (6)
C30.0688 (9)0.0463 (7)0.0536 (7)0.0041 (6)0.0261 (7)0.0004 (6)
C40.0429 (6)0.0454 (6)0.0426 (6)0.0039 (5)0.0139 (5)0.0048 (5)
C50.0419 (6)0.0474 (7)0.0448 (6)0.0050 (5)0.0161 (5)0.0005 (5)
C60.0424 (6)0.0444 (6)0.0531 (7)0.0024 (5)0.0136 (5)0.0039 (5)
C70.0475 (6)0.0434 (6)0.0439 (6)0.0018 (5)0.0159 (5)0.0026 (5)
C80.0424 (6)0.0409 (6)0.0391 (6)0.0020 (5)0.0105 (5)0.0002 (5)
C90.0463 (6)0.0417 (6)0.0494 (7)0.0014 (5)0.0154 (5)0.0079 (5)
C100.0789 (10)0.0421 (7)0.0566 (8)0.0046 (6)0.0211 (7)0.0018 (6)
C110.0914 (12)0.0421 (7)0.0679 (10)0.0033 (8)0.0134 (8)0.0105 (7)
C120.0729 (10)0.0653 (10)0.0565 (8)0.0053 (8)0.0048 (7)0.0172 (7)
C130.0809 (10)0.0681 (10)0.0510 (8)0.0059 (8)0.0253 (7)0.0041 (7)
C140.0738 (9)0.0459 (7)0.0563 (8)0.0025 (6)0.0269 (7)0.0018 (6)
Geometric parameters (Å, º) top
S1—C81.6707 (13)C5—H50.9300
O1—N11.2132 (19)C6—H60.9300
O2—N11.2162 (19)C9—C101.5173 (19)
O3—C71.2213 (15)C9—C141.518 (2)
N1—C11.4785 (17)C9—H90.9800
N2—C71.3717 (16)C10—C111.521 (2)
N2—C81.4058 (16)C10—H10A0.9700
N2—H2N0.835 (18)C10—H10B0.9700
N3—C81.3182 (16)C11—C121.511 (2)
N3—C91.4665 (15)C11—H11A0.9700
N3—H3N0.817 (17)C11—H11B0.9700
C1—C61.3774 (18)C12—C131.501 (3)
C1—C21.379 (2)C12—H12A0.9700
C2—C31.380 (2)C12—H12B0.9700
C2—H20.9300C13—C141.524 (2)
C3—C41.3932 (17)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.3857 (18)C14—H14A0.9700
C4—C71.5008 (17)C14—H14B0.9700
C5—C61.3869 (17)
O1—N1—O2123.31 (14)C10—C9—C14110.89 (12)
O1—N1—C1118.89 (13)N3—C9—H9108.9
O2—N1—C1117.78 (15)C10—C9—H9108.9
C7—N2—C8126.77 (11)C14—C9—H9108.9
C7—N2—H2N117.8 (12)C9—C10—C11111.20 (13)
C8—N2—H2N115.1 (12)C9—C10—H10A109.4
C8—N3—C9126.38 (11)C11—C10—H10A109.4
C8—N3—H3N115.9 (11)C9—C10—H10B109.4
C9—N3—H3N117.4 (11)C11—C10—H10B109.4
C6—C1—C2123.12 (12)H10A—C10—H10B108.0
C6—C1—N1118.42 (13)C12—C11—C10111.65 (13)
C2—C1—N1118.46 (12)C12—C11—H11A109.3
C1—C2—C3118.19 (12)C10—C11—H11A109.3
C1—C2—H2120.9C12—C11—H11B109.3
C3—C2—H2120.9C10—C11—H11B109.3
C2—C3—C4120.20 (13)H11A—C11—H11B108.0
C2—C3—H3119.9C13—C12—C11111.23 (14)
C4—C3—H3119.9C13—C12—H12A109.4
C5—C4—C3120.17 (12)C11—C12—H12A109.4
C5—C4—C7121.95 (11)C13—C12—H12B109.4
C3—C4—C7117.52 (12)C11—C12—H12B109.4
C4—C5—C6120.26 (12)H12A—C12—H12B108.0
C4—C5—H5119.9C12—C13—C14111.98 (13)
C6—C5—H5119.9C12—C13—H13A109.2
C1—C6—C5118.04 (12)C14—C13—H13A109.2
C1—C6—H6121.0C12—C13—H13B109.2
C5—C6—H6121.0C14—C13—H13B109.2
O3—C7—N2123.77 (12)H13A—C13—H13B107.9
O3—C7—C4119.66 (11)C9—C14—C13111.10 (12)
N2—C7—C4116.56 (11)C9—C14—H14A109.4
N3—C8—N2115.75 (11)C13—C14—H14A109.4
N3—C8—S1125.16 (10)C9—C14—H14B109.4
N2—C8—S1119.09 (9)C13—C14—H14B109.4
N3—C9—C10108.03 (11)H14A—C14—H14B108.0
N3—C9—C14111.11 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O30.817 (17)1.981 (17)2.6507 (17)138.8 (14)
N2—H2N···S1i0.84 (2)2.67 (2)3.4999 (12)171.3 (16)
C6—H6···O3ii0.932.543.3041 (17)140
C9—H9···S10.982.823.1555 (13)101
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H17N3O3S
Mr307.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.7865 (7), 6.9218 (4), 20.6788 (13)
β (°) 101.493 (1)
V3)1512.96 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.43 × 0.32 × 0.26
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.909, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
10042, 3683, 3177
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.04
No. of reflections3683
No. of parameters200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: SMART (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O30.817 (17)1.981 (17)2.6507 (17)138.8 (14)
N2—H2N···S1i0.84 (2)2.67 (2)3.4999 (12)171.3 (16)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Allama Iqbal Open University, Islamabad, and The Hong Kong Polytechnic University for providing laboratory and analytical facilities.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationD'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232.  Web of Science PubMed CAS Google Scholar
First citationGlasser, A. C. & Doughty, R. M. (1964). J. Pharm. Sci. 53, 40–42.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJain, V. K. & Rao, J. T. (2003). J. Inst. Chem. (India), 75, 24–26.  CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217–1222.  CAS Google Scholar
First citationZeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855–6860.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds