organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(2-Amino­anilino)phen­yl]-2,2,2-tri­fluoro­ethanone

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 8 March 2010; accepted 9 March 2010; online 24 April 2010)

In the title compound, C14H11F3N2O, the two aromatic rings are oriented at a dihedral angle of 70.84 (8)°. The crystal structure displays inter­molecular N—H⋯O and N—H⋯F inter­actions.

Related literature

For 2,2,2-trifluoroacetophenones as intermediates for further Buchwald–Hartwig coupling, see: Colard et al. (1994[Colard, J. N., Hornsperger, J. M. & Schirlin, D. (1994). Eur. Patent Appl. 36 pp. CODEN: EPXXDW EP627400 A1 19941207CAN 122:132760 AN 1995:350802.]); Schenck et al. (2004[Schenck, H. A., Lenkowski, P. W., Choudhury-Mukherjee, I., Ko, S.-H., Stables, J. P., Patel, M. K., Milton, L. & Brown, M. L. (2004). Bioorg. Med. Chem. 12, 979-993.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11F3N2O

  • Mr = 280.25

  • Orthorhombic, P b c a

  • a = 13.0385 (13) Å

  • b = 8.7129 (7) Å

  • c = 22.424 (2) Å

  • V = 2547.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 21134 measured reflections

  • 3033 independent reflections

  • 2498 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.06

  • 3033 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7B⋯F19i 0.91 2.32 3.2077 (19) 166
N8—H8⋯O16ii 0.96 2.06 2.9757 (17) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

2,2,2-Trifluoroacetophenones are well known as building-blocks in the synthesis of therapeutic agents for example as acetylcholinesterase inhibitors (Colard et al., 1994), as anticonvulsants (Schenck et al., 2004) or as hPPAR agonists. The title compound was prepared in the course of our studies on acetophenone derivatives as potent p38 mitogen-activated protein (MAP) kinase inhibitors.

In the molecule (Fig. 1), rings A (C1—C6) and B (C10—C15) are, of course, planar and they are oriented at a dihedral angle of A/B = 70.84 (8)°. In the crystal structure, intermolecular N8—H8···O16 (2,06 Å) and N7—H7B···F19 (2,32 Å) interactions link the molecules into a three dimensional network. The N8—H8···O16 hydrogen bond forms a chain along the a-axis whereas the N7—H7B···F19 interaction connects two of this chains in direction parallel to the c-axis.

Related literature top

For 2,2,2-trifluoroacetophenones as intermediates, see: Colard et al. (1994); Schenck et al. (2004); Santini et al. (2003).

Experimental top

For the preparation of the title compound a mixture of 501 mg (2.4 mmol) 1-(4-chlorophenyl)-2,2,2-trifluoroethanone, 332 mg (2.4 mmol) 2-nitroaniline, 1400 mg (4.3 mmol) Cs2CO3,90 mg (0.19 mmol) 2-(dicyclohexylphosphino)-2'-, 4'-, 6'-triisopropylbiphenyl and 20 mg (0.09 mmol) Pd(OAc)2 in 2 ml absolute tert-butanol and 8 ml absolute toluol was stirred for 2 h at 90 °C under an atmosphere of argon. The mixture was diluted with water then extracted with ethyl acetate. The extracts were combined, washed with saturated saline solution, and then dried over Na2SO4. The solvent was removed under vacuum and the crude product was dissolved in 10 ml ethanol, 840 mg (3.71 mmol) tin(II)chloride-dihydrate was added and stirred for 5 h at 348 K. After cooling down to room temperature the mixture was quenched with 20 ml ice-water and after alkalization with NaOH (20 %) extracted three-times with ethyl acetate. The combined organic layer was washed twice with water, dried (Na2SO4), and evaporated under reduced pressure. The residue was purified by flashchromatography (SiO2 60, hexane / ethyl acetate) (yield: 21.5 %). Crystals of the title compound were obtained by slow evaporation of a methanol d6solution at room temperature.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atoms attached to N7 and N8 were located in difference Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

2,2,2-Trifluoroacetophenones are well known as building-blocks in the synthesis of therapeutic agents for example as acetylcholinesterase inhibitors (Colard et al., 1994), as anticonvulsants (Schenck et al., 2004) or as hPPAR agonists. The title compound was prepared in the course of our studies on acetophenone derivatives as potent p38 mitogen-activated protein (MAP) kinase inhibitors.

In the molecule (Fig. 1), rings A (C1—C6) and B (C10—C15) are, of course, planar and they are oriented at a dihedral angle of A/B = 70.84 (8)°. In the crystal structure, intermolecular N8—H8···O16 (2,06 Å) and N7—H7B···F19 (2,32 Å) interactions link the molecules into a three dimensional network. The N8—H8···O16 hydrogen bond forms a chain along the a-axis whereas the N7—H7B···F19 interaction connects two of this chains in direction parallel to the c-axis.

For 2,2,2-trifluoroacetophenones as intermediates, see: Colard et al. (1994); Schenck et al. (2004); Santini et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
1-[4-(2-Aminoanilino)phenyl]-2,2,2-trifluoroethanone top
Crystal data top
C14H11F3N2OF(000) = 1152
Mr = 280.25Dx = 1.461 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7908 reflections
a = 13.0385 (13) Åθ = 2.4–27.7°
b = 8.7129 (7) ŵ = 0.12 mm1
c = 22.424 (2) ÅT = 173 K
V = 2547.4 (4) Å3Block, brown
Z = 80.4 × 0.3 × 0.2 mm
Data collection top
Bruker SMART APEXII
diffractometer
2498 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.026
Graphite monochromatorθmax = 27.9°, θmin = 1.8°
CCD scanh = 1717
21134 measured reflectionsk = 118
3033 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0601P)2 + 1.4118P]
where P = (Fo2 + 2Fc2)/3
3033 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H11F3N2OV = 2547.4 (4) Å3
Mr = 280.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0385 (13) ŵ = 0.12 mm1
b = 8.7129 (7) ÅT = 173 K
c = 22.424 (2) Å0.4 × 0.3 × 0.2 mm
Data collection top
Bruker SMART APEXII
diffractometer
2498 reflections with I > 2σ(I)
21134 measured reflectionsRint = 0.026
3033 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.67 e Å3
3033 reflectionsΔρmin = 0.29 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18780 (11)0.80106 (18)0.63368 (7)0.0277 (3)
C20.19637 (13)0.7530 (2)0.69312 (7)0.0330 (4)
C30.11693 (16)0.7953 (2)0.73256 (8)0.0479 (5)
H30.12030.76410.77310.057*
C40.03490 (16)0.8806 (3)0.71344 (11)0.0580 (6)
H40.01810.90600.74080.070*
C50.02813 (15)0.9299 (3)0.65535 (11)0.0546 (6)
H50.02820.99080.64270.065*
C60.10447 (13)0.8895 (2)0.61572 (8)0.0381 (4)
H60.10000.92260.57540.046*
N70.27946 (14)0.6728 (2)0.71200 (7)0.0486 (4)
H7A0.32490.62750.68710.073*
H7B0.26750.63080.74830.073*
N80.26108 (10)0.75201 (16)0.59059 (5)0.0291 (3)
H80.22970.69120.56000.035*
C90.35838 (11)0.80793 (18)0.58519 (6)0.0255 (3)
C100.39963 (12)0.91396 (18)0.62580 (6)0.0271 (3)
H100.35940.94880.65840.033*
C110.49855 (12)0.96782 (18)0.61856 (6)0.0272 (3)
H110.52561.03940.64640.033*
C120.55966 (11)0.91856 (17)0.57084 (6)0.0253 (3)
C130.51717 (12)0.81270 (19)0.53022 (6)0.0284 (3)
H130.55710.77890.49730.034*
C140.41990 (12)0.75778 (19)0.53712 (6)0.0288 (3)
H140.39340.68540.50940.035*
C150.66340 (11)0.97035 (18)0.55983 (6)0.0266 (3)
O160.71615 (9)0.93617 (15)0.51702 (5)0.0362 (3)
C170.71528 (12)1.0765 (2)0.60606 (7)0.0322 (3)
F180.81079 (8)1.10979 (14)0.59054 (5)0.0480 (3)
F190.72009 (9)1.00909 (14)0.65988 (4)0.0457 (3)
F200.66562 (9)1.20895 (13)0.61292 (6)0.0490 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (7)0.0279 (8)0.0286 (7)0.0045 (6)0.0007 (5)0.0050 (6)
C20.0395 (9)0.0301 (8)0.0294 (7)0.0087 (7)0.0016 (6)0.0028 (6)
C30.0580 (12)0.0506 (12)0.0350 (9)0.0185 (9)0.0134 (8)0.0102 (8)
C40.0368 (10)0.0683 (15)0.0690 (14)0.0087 (10)0.0175 (9)0.0283 (12)
C50.0323 (9)0.0582 (13)0.0731 (15)0.0060 (9)0.0043 (9)0.0257 (11)
C60.0323 (8)0.0357 (9)0.0461 (9)0.0009 (7)0.0083 (7)0.0099 (7)
N70.0645 (11)0.0484 (10)0.0328 (7)0.0107 (8)0.0015 (7)0.0043 (7)
N80.0285 (6)0.0334 (7)0.0254 (6)0.0031 (5)0.0012 (5)0.0067 (5)
C90.0268 (7)0.0262 (7)0.0235 (6)0.0018 (6)0.0019 (5)0.0023 (5)
C100.0291 (7)0.0277 (8)0.0246 (6)0.0013 (6)0.0031 (5)0.0041 (6)
C110.0300 (7)0.0265 (8)0.0252 (7)0.0009 (6)0.0008 (5)0.0049 (6)
C120.0270 (7)0.0265 (8)0.0225 (6)0.0027 (6)0.0004 (5)0.0005 (5)
C130.0315 (7)0.0329 (8)0.0208 (6)0.0051 (6)0.0011 (5)0.0029 (6)
C140.0334 (7)0.0309 (8)0.0221 (6)0.0005 (6)0.0032 (6)0.0047 (6)
C150.0277 (7)0.0272 (8)0.0250 (7)0.0041 (6)0.0003 (5)0.0019 (6)
O160.0313 (6)0.0471 (7)0.0302 (6)0.0038 (5)0.0073 (4)0.0043 (5)
C170.0301 (8)0.0333 (9)0.0331 (8)0.0041 (6)0.0044 (6)0.0016 (6)
F180.0326 (5)0.0561 (7)0.0552 (7)0.0143 (5)0.0085 (5)0.0073 (5)
F190.0530 (7)0.0552 (7)0.0289 (5)0.0147 (5)0.0056 (4)0.0012 (4)
F200.0485 (6)0.0319 (6)0.0667 (7)0.0023 (5)0.0089 (5)0.0128 (5)
Geometric parameters (Å, º) top
C1—C61.391 (2)C9—C101.404 (2)
C1—C21.402 (2)C9—C141.413 (2)
C1—N81.4244 (19)C10—C111.382 (2)
C2—N71.357 (2)C10—H100.9500
C2—C31.411 (2)C11—C121.402 (2)
C3—C41.371 (3)C11—H110.9500
C3—H30.9500C12—C131.410 (2)
C4—C51.374 (4)C12—C151.447 (2)
C4—H40.9500C13—C141.364 (2)
C5—C61.380 (3)C13—H130.9500
C5—H50.9500C14—H140.9500
C6—H60.9500C15—O161.2180 (18)
N7—H7A0.9044C15—C171.545 (2)
N7—H7B0.9069C17—F181.3251 (18)
N8—C91.364 (2)C17—F201.332 (2)
N8—H80.9582C17—F191.3437 (19)
C6—C1—C2120.18 (15)C10—C9—C14118.74 (14)
C6—C1—N8119.58 (15)C11—C10—C9120.30 (13)
C2—C1—N8120.13 (14)C11—C10—H10119.8
N7—C2—C1120.94 (15)C9—C10—H10119.8
N7—C2—C3121.67 (16)C10—C11—C12121.08 (14)
C1—C2—C3117.36 (17)C10—C11—H11119.5
C4—C3—C2121.20 (19)C12—C11—H11119.5
C4—C3—H3119.4C11—C12—C13118.05 (14)
C2—C3—H3119.4C11—C12—C15124.48 (14)
C3—C4—C5121.06 (18)C13—C12—C15117.46 (13)
C3—C4—H4119.5C14—C13—C12121.44 (13)
C5—C4—H4119.5C14—C13—H13119.3
C4—C5—C6119.0 (2)C12—C13—H13119.3
C4—C5—H5120.5C13—C14—C9120.38 (14)
C6—C5—H5120.5C13—C14—H14119.8
C5—C6—C1121.21 (18)C9—C14—H14119.8
C5—C6—H6119.4O16—C15—C12125.88 (14)
C1—C6—H6119.4O16—C15—C17115.33 (14)
C2—N7—H7A123.8C12—C15—C17118.78 (13)
C2—N7—H7B110.6F18—C17—F20107.33 (14)
H7A—N7—H7B119.4F18—C17—F19106.72 (14)
C9—N8—C1125.23 (12)F20—C17—F19107.33 (13)
C9—N8—H8122.1F18—C17—C15111.47 (13)
C1—N8—H8111.3F20—C17—C15112.54 (13)
N8—C9—C10122.24 (13)F19—C17—C15111.16 (13)
N8—C9—C14119.02 (13)
C6—C1—C2—N7176.94 (16)C10—C11—C12—C130.2 (2)
N8—C1—C2—N76.8 (2)C10—C11—C12—C15179.43 (14)
C6—C1—C2—C31.2 (2)C11—C12—C13—C140.7 (2)
N8—C1—C2—C3175.01 (15)C15—C12—C13—C14179.98 (14)
N7—C2—C3—C4177.89 (19)C12—C13—C14—C90.9 (2)
C1—C2—C3—C40.3 (3)N8—C9—C14—C13179.40 (14)
C2—C3—C4—C51.1 (3)C10—C9—C14—C130.5 (2)
C3—C4—C5—C61.4 (3)C11—C12—C15—O16175.65 (16)
C4—C5—C6—C10.4 (3)C13—C12—C15—O163.6 (2)
C2—C1—C6—C50.9 (3)C11—C12—C15—C175.5 (2)
N8—C1—C6—C5175.34 (17)C13—C12—C15—C17175.33 (14)
C6—C1—N8—C9107.87 (18)O16—C15—C17—F181.0 (2)
C2—C1—N8—C975.9 (2)C12—C15—C17—F18178.04 (14)
C1—N8—C9—C105.3 (2)O16—C15—C17—F20119.68 (16)
C1—N8—C9—C14174.67 (15)C12—C15—C17—F2061.32 (19)
N8—C9—C10—C11179.88 (14)O16—C15—C17—F19119.90 (15)
C14—C9—C10—C110.1 (2)C12—C15—C17—F1959.11 (19)
C9—C10—C11—C120.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7B···F19i0.912.323.2077 (19)166
N8—H8···O16ii0.962.062.9757 (17)159
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H11F3N2O
Mr280.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)13.0385 (13), 8.7129 (7), 22.424 (2)
V3)2547.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21134, 3033, 2498
Rint0.026
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.06
No. of reflections3033
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.29

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7B···F19i0.912.323.2077 (19)166
N8—H8···O16ii0.962.062.9757 (17)159
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+3/2, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColard, J. N., Hornsperger, J. M. & Schirlin, D. (1994). Eur. Patent Appl. 36 pp. CODEN: EPXXDW EP627400 A1 19941207CAN 122:132760 AN 1995:350802.  Google Scholar
First citationSchenck, H. A., Lenkowski, P. W., Choudhury-Mukherjee, I., Ko, S.-H., Stables, J. P., Patel, M. K., Milton, L. & Brown, M. L. (2004). Bioorg. Med. Chem. 12, 979–993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds