organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-tert-Butyl-4-methyl-6-(1,3-oxazinan-1-ylmeth­yl)phenol

aCollege of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 March 2010; accepted 30 March 2010; online 10 April 2010)

The title compound, C16H25NO2, which was synthesized by a Mannich reaction route, is a rare example of an organic compound containing the six-membered oxazine ring. The ring adopts a chair conformation and the N atom is pyramidal. The N atom serves as a hydrogen-bond acceptor to the phenolic OH group.

Related literature

The synthesis from 2-tert-butyl-4-methyl­phenol, 3-amino-1-propanol and formaldehyde is an example of carbon–carbon bond formation by the Mannich reaction. For another variation of the Mannich reaction involving 3-amino-1-propanol, see: Korepin et al. (2001[Korepin, A. G., Galkin, P. V., Glushakova, N. M., Lagodzinskaya, G. V., Loginova, M. V., Lodygina, V. P. & Eremenko, L. T. (2001). Russ. Chem. Bull. 50, 104-109.]).

[Scheme 1]

Experimental

Crystal data
  • C16H25NO2

  • Mr = 263.37

  • Orthorhombic, P 21 21 21

  • a = 6.4740 (7) Å

  • b = 14.1928 (13) Å

  • c = 16.7914 (16) Å

  • V = 1542.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.28 × 0.20 × 0.12 mm

Data collection
  • Rigaku R-AXIS Spider IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.991

  • 15222 measured reflections

  • 2044 independent reflections

  • 1664 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.117

  • S = 1.11

  • 2044 reflections

  • 180 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (1) 1.90 (2) 2.665 (2) 149 (3)

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Organic synthesis centers largely on stereoselective carbon–carbon and carbon–heteroatom bond-forming reactions; among such reactions is the class of Mannich reactions, which can be regarded as being the most important carbon–carbon bond-forming reaction. The reactions lead to β-aminocarbonyl compounds, which are important intermediates for pharmaceuticals.

One variation of the Mannich reaction involves the catalytic addition of an amine, R2NH, to an alkene or alkyne, i. e., hydroamination. In the 2-tert-butyl-4-methylphenol reacts with 3-amino-1-propanol to yield a compound having a 1,3-oxazinyl ring (Scheme I, Fig. 1). Such a ring is difficult to synthesis by conventional routes.

Related literature top

The synthesis from 2-tert-butyl-4-methylphenol, 3-amino-1-propanol and formaldehyde is an example of carbon–carbon bond formation by the Mannich reaction. For another variation of the Mannich reaction involving 3-amino-1-propanol, see: Korepin et al. (2001).

Experimental top

2-tert-Butyl-4-methylphenol (2.24 g, 12.3 mmol), 3-amino-1-propanol (0.93 g, 12.3 mmol), 37% aqueous formaldehyde (1.83 ml, 24.6 mmol) and triethylamine (2.49 g, 24.6 mmol) in ethanol (50 ml) were heated for 6 hours. Slow evaporation of the filtrate gave light-yellow crystals in 70% yield.

Refinement top

Carbon-bound H-atoms were allowed to ride on their parent atoms (C–H 0.93– 0.97 Å) and their displacement parameters were set to 1.2–1.5Ueq(C). The hydroxy H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

Due to the absence of anomalous scatterers, the absolute configuration could not be determined, and, therefore, 1488 Friedel pairs were merged.

Structure description top

Organic synthesis centers largely on stereoselective carbon–carbon and carbon–heteroatom bond-forming reactions; among such reactions is the class of Mannich reactions, which can be regarded as being the most important carbon–carbon bond-forming reaction. The reactions lead to β-aminocarbonyl compounds, which are important intermediates for pharmaceuticals.

One variation of the Mannich reaction involves the catalytic addition of an amine, R2NH, to an alkene or alkyne, i. e., hydroamination. In the 2-tert-butyl-4-methylphenol reacts with 3-amino-1-propanol to yield a compound having a 1,3-oxazinyl ring (Scheme I, Fig. 1). Such a ring is difficult to synthesis by conventional routes.

The synthesis from 2-tert-butyl-4-methylphenol, 3-amino-1-propanol and formaldehyde is an example of carbon–carbon bond formation by the Mannich reaction. For another variation of the Mannich reaction involving 3-amino-1-propanol, see: Korepin et al. (2001).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-tert-Butyl-4-methyl-6-(1,3-oxazinan-1-ylmethyl)phenol top
Crystal data top
C16H25NO2F(000) = 576
Mr = 263.37Dx = 1.134 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12093 reflections
a = 6.4740 (7) Åθ = 3.1–27.5°
b = 14.1928 (13) ŵ = 0.07 mm1
c = 16.7914 (16) ÅT = 293 K
V = 1542.9 (3) Å3Block, yellow
Z = 40.28 × 0.20 × 0.12 mm
Data collection top
Rigaku R-AXIS Spider IP
diffractometer
2044 independent reflections
Radiation source: fine-focus sealed tube1664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.980, Tmax = 0.991k = 1818
15222 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.0371P]
where P = (Fo2 + 2Fc2)/3
2044 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C16H25NO2V = 1542.9 (3) Å3
Mr = 263.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4740 (7) ŵ = 0.07 mm1
b = 14.1928 (13) ÅT = 293 K
c = 16.7914 (16) Å0.28 × 0.20 × 0.12 mm
Data collection top
Rigaku R-AXIS Spider IP
diffractometer
2044 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1664 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.991Rint = 0.022
15222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.14 e Å3
2044 reflectionsΔρmin = 0.12 e Å3
180 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8894 (2)0.48173 (11)0.62162 (8)0.0654 (4)
H10.972 (4)0.5284 (14)0.6242 (18)0.095 (9)*
O20.9444 (3)0.75355 (12)0.59189 (10)0.0816 (5)
N11.0668 (3)0.63695 (11)0.67909 (9)0.0550 (4)
C10.7719 (3)0.47819 (12)0.68939 (10)0.0494 (4)
C20.8294 (3)0.53321 (12)0.75571 (10)0.0506 (4)
C30.7081 (3)0.53034 (12)0.82338 (10)0.0536 (4)
H30.74510.56700.86700.064*
C40.5332 (3)0.47461 (12)0.82833 (10)0.0524 (4)
C50.4816 (3)0.42039 (12)0.76175 (10)0.0501 (4)
H50.36560.38190.76460.060*
C60.5953 (3)0.42121 (12)0.69126 (10)0.0468 (4)
C71.0274 (3)0.58874 (15)0.75529 (11)0.0594 (5)
H7A1.02220.63530.79750.071*
H7B1.14150.54650.76660.071*
C80.4047 (4)0.47229 (16)0.90293 (11)0.0731 (6)
H8A0.27490.44230.89190.110*
H8B0.38060.53550.92110.110*
H8C0.47650.43760.94340.110*
C90.5275 (3)0.36320 (13)0.61807 (10)0.0539 (4)
C100.4755 (5)0.43096 (16)0.54936 (12)0.0754 (6)
H10A0.35550.46730.56300.113*
H10B0.44840.39530.50190.113*
H10C0.59010.47250.54030.113*
C110.3358 (4)0.30415 (17)0.63527 (14)0.0745 (6)
H11A0.22440.34480.65100.112*
H11B0.36510.26050.67740.112*
H11C0.29710.27010.58820.112*
C120.7001 (4)0.29608 (16)0.59218 (13)0.0731 (6)
H12A0.65040.25580.55040.110*
H12B0.74230.25840.63680.110*
H12C0.81570.33200.57310.110*
C130.9229 (3)0.71409 (15)0.66757 (13)0.0668 (5)
H13A0.78280.69120.67420.080*
H13B0.94760.76210.70760.080*
C141.1466 (4)0.79381 (18)0.58285 (17)0.0839 (7)
H14A1.16540.84390.62150.101*
H14B1.16000.82080.53000.101*
C151.3100 (4)0.71942 (18)0.59488 (14)0.0743 (6)
H15A1.30170.67320.55240.089*
H15B1.44570.74820.59300.089*
C161.2798 (3)0.67164 (15)0.67383 (13)0.0633 (5)
H16A1.37570.61950.67900.076*
H16B1.30650.71580.71670.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (9)0.0845 (9)0.0533 (7)0.0116 (8)0.0156 (7)0.0123 (7)
O20.0656 (10)0.0945 (10)0.0847 (10)0.0108 (9)0.0202 (8)0.0295 (9)
N10.0417 (8)0.0652 (8)0.0579 (8)0.0029 (7)0.0030 (7)0.0015 (7)
C10.0461 (9)0.0594 (8)0.0427 (8)0.0024 (8)0.0025 (7)0.0022 (7)
C20.0480 (10)0.0563 (9)0.0474 (8)0.0045 (8)0.0048 (7)0.0002 (8)
C30.0618 (11)0.0578 (9)0.0412 (8)0.0048 (9)0.0042 (8)0.0049 (7)
C40.0547 (10)0.0583 (8)0.0443 (8)0.0077 (8)0.0048 (8)0.0005 (8)
C50.0474 (10)0.0540 (8)0.0491 (8)0.0026 (8)0.0026 (7)0.0007 (7)
C60.0456 (9)0.0517 (8)0.0431 (7)0.0058 (7)0.0011 (7)0.0018 (7)
C70.0526 (11)0.0719 (10)0.0537 (9)0.0032 (10)0.0084 (9)0.0020 (9)
C80.0795 (16)0.0877 (13)0.0519 (11)0.0033 (13)0.0197 (10)0.0034 (10)
C90.0553 (11)0.0637 (10)0.0428 (8)0.0006 (9)0.0051 (8)0.0044 (8)
C100.0868 (17)0.0854 (13)0.0541 (10)0.0005 (13)0.0201 (11)0.0065 (10)
C110.0764 (16)0.0823 (13)0.0649 (12)0.0191 (12)0.0065 (11)0.0106 (11)
C120.0834 (17)0.0754 (12)0.0606 (11)0.0122 (13)0.0005 (11)0.0172 (10)
C130.0492 (11)0.0760 (11)0.0752 (13)0.0046 (10)0.0018 (11)0.0095 (11)
C140.0771 (17)0.0884 (14)0.0861 (16)0.0235 (14)0.0163 (14)0.0215 (13)
C150.0625 (14)0.0911 (14)0.0694 (13)0.0203 (12)0.0040 (11)0.0028 (11)
C160.0458 (10)0.0732 (11)0.0708 (12)0.0052 (9)0.0033 (10)0.0011 (10)
Geometric parameters (Å, º) top
O1—C11.370 (2)C9—C111.526 (3)
O1—H10.852 (10)C9—C121.531 (3)
O2—C131.396 (3)C9—C101.539 (3)
O2—C141.436 (3)C10—H10A0.9600
N1—C131.450 (3)C10—H10B0.9600
N1—C161.467 (3)C10—H10C0.9600
N1—C71.473 (2)C11—H11A0.9600
C1—C61.401 (3)C11—H11B0.9600
C1—C21.410 (2)C11—H11C0.9600
C2—C31.382 (3)C12—H12A0.9600
C2—C71.505 (3)C12—H12B0.9600
C3—C41.384 (3)C12—H12C0.9600
C3—H30.9300C13—H13A0.9700
C4—C51.398 (2)C13—H13B0.9700
C4—C81.504 (2)C14—C151.508 (4)
C5—C61.394 (2)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C6—C91.543 (2)C15—C161.502 (3)
C7—H7A0.9700C15—H15A0.9700
C7—H7B0.9700C15—H15B0.9700
C8—H8A0.9600C16—H16A0.9700
C8—H8B0.9600C16—H16B0.9700
C8—H8C0.9600
C1—O1—H1110 (2)C9—C10—H10B109.5
C13—O2—C14110.29 (18)H10A—C10—H10B109.5
C13—N1—C16110.01 (15)C9—C10—H10C109.5
C13—N1—C7110.80 (16)H10A—C10—H10C109.5
C16—N1—C7111.79 (16)H10B—C10—H10C109.5
O1—C1—C6119.54 (15)C9—C11—H11A109.5
O1—C1—C2119.30 (17)C9—C11—H11B109.5
C6—C1—C2121.15 (16)H11A—C11—H11B109.5
C3—C2—C1118.89 (18)C9—C11—H11C109.5
C3—C2—C7120.23 (16)H11A—C11—H11C109.5
C1—C2—C7120.73 (17)H11B—C11—H11C109.5
C2—C3—C4122.09 (16)C9—C12—H12A109.5
C2—C3—H3119.0C9—C12—H12B109.5
C4—C3—H3119.0H12A—C12—H12B109.5
C3—C4—C5117.54 (16)C9—C12—H12C109.5
C3—C4—C8121.00 (16)H12A—C12—H12C109.5
C5—C4—C8121.45 (18)H12B—C12—H12C109.5
C6—C5—C4123.24 (18)O2—C13—N1111.13 (18)
C6—C5—H5118.4O2—C13—H13A109.4
C4—C5—H5118.4N1—C13—H13A109.4
C5—C6—C1117.06 (15)O2—C13—H13B109.4
C5—C6—C9121.45 (17)N1—C13—H13B109.4
C1—C6—C9121.49 (15)H13A—C13—H13B108.0
N1—C7—C2113.26 (15)O2—C14—C15110.27 (18)
N1—C7—H7A108.9O2—C14—H14A109.6
C2—C7—H7A108.9C15—C14—H14A109.6
N1—C7—H7B108.9O2—C14—H14B109.6
C2—C7—H7B108.9C15—C14—H14B109.6
H7A—C7—H7B107.7H14A—C14—H14B108.1
C4—C8—H8A109.5C16—C15—C14110.1 (2)
C4—C8—H8B109.5C16—C15—H15A109.6
H8A—C8—H8B109.5C14—C15—H15A109.6
C4—C8—H8C109.5C16—C15—H15B109.6
H8A—C8—H8C109.5C14—C15—H15B109.6
H8B—C8—H8C109.5H15A—C15—H15B108.2
C11—C9—C12107.79 (16)N1—C16—C15109.08 (18)
C11—C9—C10107.87 (19)N1—C16—H16A109.9
C12—C9—C10109.61 (18)C15—C16—H16A109.9
C11—C9—C6111.95 (16)N1—C16—H16B109.9
C12—C9—C6110.53 (17)C15—C16—H16B109.9
C10—C9—C6109.03 (15)H16A—C16—H16B108.3
C9—C10—H10A109.5
O1—C1—C2—C3178.97 (16)C16—N1—C7—C2166.73 (16)
C6—C1—C2—C30.0 (3)C3—C2—C7—N1142.23 (18)
O1—C1—C2—C75.4 (3)C1—C2—C7—N142.2 (2)
C6—C1—C2—C7175.57 (16)C5—C6—C9—C113.1 (2)
C1—C2—C3—C40.6 (3)C1—C6—C9—C11177.96 (17)
C7—C2—C3—C4175.06 (16)C5—C6—C9—C12123.27 (19)
C2—C3—C4—C50.1 (2)C1—C6—C9—C1257.8 (2)
C2—C3—C4—C8179.57 (19)C5—C6—C9—C10116.2 (2)
C3—C4—C5—C61.0 (3)C1—C6—C9—C1062.8 (2)
C8—C4—C5—C6179.35 (17)C14—O2—C13—N163.1 (2)
C4—C5—C6—C11.5 (3)C16—N1—C13—O262.4 (2)
C4—C5—C6—C9177.50 (16)C7—N1—C13—O2173.52 (16)
O1—C1—C6—C5179.96 (17)C13—O2—C14—C1559.0 (3)
C2—C1—C6—C50.9 (2)O2—C14—C15—C1654.6 (3)
O1—C1—C6—C91.0 (2)C13—N1—C16—C1556.7 (2)
C2—C1—C6—C9178.05 (16)C7—N1—C16—C15179.72 (18)
C13—N1—C7—C270.2 (2)C14—C15—C16—N153.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.90 (2)2.665 (2)149 (3)

Experimental details

Crystal data
Chemical formulaC16H25NO2
Mr263.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.4740 (7), 14.1928 (13), 16.7914 (16)
V3)1542.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.20 × 0.12
Data collection
DiffractometerRigaku R-AXIS Spider IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.980, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15222, 2044, 1664
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.117, 1.11
No. of reflections2044
No. of parameters180
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: RAPID-AUTO (Rigaku, 2002), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.90 (2)2.665 (2)149 (3)
 

Acknowledgements

We thank South China University of Technology and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKorepin, A. G., Galkin, P. V., Glushakova, N. M., Lagodzinskaya, G. V., Loginova, M. V., Lodygina, V. P. & Eremenko, L. T. (2001). Russ. Chem. Bull. 50, 104–109.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds