supplementary materials


ci5049 scheme

Acta Cryst. (2010). E66, o1072    [ doi:10.1107/S1600536810012468 ]

Cyclohexane-1-spiro-2'-imidazolidine-5'-spiro-1''-cyclohexan-4'-one

T. Kavitha, S. Ponnuswamy, R. Vijayalakshmi, M. Thenmozhi and M. N. Ponnuswamy

Abstract top

In the title compound, C13H22N2O, the central imidazolidine ring is in an envelope conformation and the two cyclohexane rings adopt chair conformations. In the crystal structure, the molecules are linked into centrosymmetric R22(8) dimers by pairs of N-H...O hydrogen bonds.

Comment top

Imidazolidines occupy a unique position among the five-membered heterocycles and are highly used in synthetic as well as mechanistic organic chemistry and biochemistry (Tsao et al., 1991). Imidazolidine derivatives are important intermediates and building blocks in the construction of various biologically active compounds (Wang et al., 1995).

In the title molecule (Fig. 1), the five-membered imidazolidine ring is transfused with two cyclohexane rings. The bond lengths are comparable to the reported values (Allen et al., 1987). The imidazolidine ring adopts an envelope conformation, with flap atom N1 deviating by 0.198 (2) Å from the C2/N3/C4/C5 plane. The asymmetry parameters for the imidazolidine ring shows that a mirror plane is passing through the atom N1 [ΔCs = 2.7 (1)] (Nardelli, 1995); the puckering parameters [q2 = 0.128 (1) Å and φ(2) = 187.8 (5)°] (Cremer & Pople, 1975) also support the above fact. The sum of the bond angles around N1 (326.6°) shows sp3 hybridization and atom N3 (359.6°) is in accordance with sp2 hybridization. The two cyclohexane rings adopt chair conformations.

In the crystal, molecules are linked into centrosymmetric R22(8) (Bernstein et al., 1995) dimers by pairs of N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to imidazolidine derivatives, see: Tsao et al. (1991); Wang et al. (1995). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1995).

Experimental top

Potassium cyanide (20 mmol), ammonium chloride (20 mmol) and aqueous ammonium sulfide (30 ml) were dissolved in water (50 ml). Cyclohexanone (40 mmol) was slowly added into the above reaction mixture and stirred for 8 h at 333 K. The precipitated cyclohexan-1-spiro-2'-(imidazolidin-4'-thione)-5'-spiro-1''-cyclohexane was filtered. An ice-cold solution of the above imidazolidin-4-thione (5 mm0l) in glacial acetic acid (5 ml) was treated with hydrogen peroxide (30%, 5 ml) and kept at room temperature for 24 h. The reaction mixture was poured into crushed ice and extracted with ether (40 ml). Evaporation of ether yielded the title compound which was recrystallized by slow evaporation of a water–acetone (20:2) solution.

Refinement top

N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C—H = 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as circles with arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound. Dashed line indicate hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Cyclohexane-1-spiro-2'-imidazolidine-5'-spiro-1''-cyclohexan-4'-one top
Crystal data top
C13H22N2OZ = 2
Mr = 222.33F(000) = 244
Triclinic, P1Dx = 1.184 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8270 (8) ÅCell parameters from 2023 reflections
b = 10.1703 (5) Åθ = 2.7–25.5°
c = 10.6651 (4) ŵ = 0.08 mm1
α = 86.103 (2)°T = 293 K
β = 81.331 (3)°Block, colourless
γ = 89.720 (3)°0.20 × 0.15 × 0.15 mm
V = 623.36 (9) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
2311 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 77
Tmin = 0.985, Tmax = 0.989k = 1212
11727 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1487P]
where P = (Fo2 + 2Fc2)/3
2311 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H22N2Oγ = 89.720 (3)°
Mr = 222.33V = 623.36 (9) Å3
Triclinic, P1Z = 2
a = 5.8270 (8) ÅMo Kα radiation
b = 10.1703 (5) ŵ = 0.08 mm1
c = 10.6651 (4) ÅT = 293 K
α = 86.103 (2)°0.20 × 0.15 × 0.15 mm
β = 81.331 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
2311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2023 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.989Rint = 0.020
11727 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.16 e Å3
2311 reflectionsAbsolute structure: ?
153 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1812 (2)0.23573 (12)0.32312 (10)0.0440 (3)
C20.17511 (19)0.25258 (11)0.45994 (11)0.0320 (3)
N30.32230 (18)0.36886 (10)0.46055 (9)0.0348 (3)
C40.4384 (2)0.40747 (12)0.34701 (11)0.0348 (3)
C50.3691 (2)0.31781 (12)0.24982 (11)0.0346 (3)
C60.0713 (2)0.27667 (14)0.52388 (13)0.0438 (3)
H6A0.17070.20530.50790.053*
H6B0.12800.35790.48660.053*
C70.0869 (3)0.28619 (17)0.66709 (14)0.0553 (4)
H7A0.00180.36340.68340.066*
H7B0.24800.29640.70420.066*
C80.0116 (3)0.16453 (18)0.72887 (14)0.0630 (5)
H8A0.08190.08820.71930.076*
H8B0.00650.17480.81900.076*
C90.2598 (3)0.14319 (15)0.66826 (14)0.0544 (4)
H9A0.31840.06290.70610.065*
H9B0.35570.21600.68450.065*
C100.2759 (2)0.13315 (12)0.52573 (13)0.0416 (3)
H10A0.19360.05470.51010.050*
H10B0.43750.12390.48920.050*
C110.5811 (2)0.23629 (14)0.20042 (13)0.0445 (3)
H11A0.70960.29530.16720.053*
H11B0.62650.18140.27040.053*
C120.5332 (3)0.14931 (15)0.09662 (13)0.0529 (4)
H12A0.67330.10220.06570.064*
H12B0.41450.08480.13150.064*
C130.4534 (3)0.23098 (16)0.01285 (13)0.0577 (4)
H13A0.57810.28930.05320.069*
H13B0.41590.17310.07560.069*
C140.2427 (3)0.31170 (16)0.03279 (13)0.0572 (4)
H14A0.11250.25310.06360.069*
H14B0.20200.36750.03790.069*
C150.2867 (3)0.39759 (14)0.13896 (12)0.0467 (3)
H15A0.40290.46380.10480.056*
H15B0.14460.44290.16970.056*
O10.58158 (18)0.49753 (9)0.32312 (8)0.0496 (3)
H30.345 (3)0.4032 (16)0.5305 (15)0.053 (4)*
H10.043 (4)0.265 (2)0.301 (2)0.097 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0481 (7)0.0532 (7)0.0324 (6)0.0184 (5)0.0079 (5)0.0091 (5)
C20.0332 (6)0.0333 (6)0.0310 (6)0.0062 (5)0.0078 (5)0.0063 (5)
N30.0434 (6)0.0335 (5)0.0290 (5)0.0089 (4)0.0078 (4)0.0070 (4)
C40.0404 (6)0.0332 (6)0.0323 (6)0.0054 (5)0.0089 (5)0.0047 (5)
C50.0399 (6)0.0357 (6)0.0294 (6)0.0071 (5)0.0076 (5)0.0054 (5)
C60.0334 (7)0.0506 (8)0.0486 (8)0.0011 (6)0.0088 (5)0.0054 (6)
C70.0424 (8)0.0719 (10)0.0494 (8)0.0067 (7)0.0067 (6)0.0177 (7)
C80.0770 (11)0.0735 (11)0.0361 (8)0.0247 (9)0.0025 (7)0.0021 (7)
C90.0700 (10)0.0470 (8)0.0491 (8)0.0036 (7)0.0236 (7)0.0091 (6)
C100.0433 (7)0.0316 (6)0.0512 (8)0.0003 (5)0.0098 (6)0.0051 (5)
C110.0459 (7)0.0468 (7)0.0424 (7)0.0003 (6)0.0091 (6)0.0098 (6)
C120.0659 (9)0.0470 (8)0.0465 (8)0.0030 (7)0.0041 (7)0.0166 (6)
C130.0811 (11)0.0589 (9)0.0338 (7)0.0059 (8)0.0051 (7)0.0151 (6)
C140.0735 (10)0.0669 (10)0.0363 (7)0.0019 (8)0.0219 (7)0.0100 (7)
C150.0609 (9)0.0459 (8)0.0359 (7)0.0046 (6)0.0135 (6)0.0063 (6)
O10.0645 (6)0.0472 (5)0.0371 (5)0.0263 (5)0.0055 (4)0.0052 (4)
Geometric parameters (Å, °) top
N1—C51.4724 (16)C8—H8B0.97
N1—C21.4759 (15)C9—C101.5192 (19)
N1—H10.91 (2)C9—H9A0.97
C2—N31.4652 (14)C9—H9B0.97
C2—C61.5203 (17)C10—H10A0.97
C2—C101.5213 (17)C10—H10B0.97
N3—C41.3300 (16)C11—C121.5213 (18)
N3—H30.872 (17)C11—H11A0.97
C4—O11.2296 (15)C11—H11B0.97
C4—C51.5255 (15)C12—C131.516 (2)
C5—C151.5243 (18)C12—H12A0.97
C5—C111.5315 (18)C12—H12B0.97
C6—C71.5260 (19)C13—C141.511 (2)
C6—H6A0.97C13—H13A0.97
C6—H6B0.97C13—H13B0.97
C7—C81.514 (2)C14—C151.5281 (18)
C7—H7A0.97C14—H14A0.97
C7—H7B0.97C14—H14B0.97
C8—C91.514 (2)C15—H15A0.97
C8—H8A0.97C15—H15B0.97
C5—N1—C2109.28 (9)C10—C9—H9A109.4
C5—N1—H1108.7 (14)C8—C9—H9B109.4
C2—N1—H1107.6 (14)C10—C9—H9B109.4
N3—C2—N1103.04 (9)H9A—C9—H9B108.0
N3—C2—C6111.13 (10)C9—C10—C2112.71 (11)
N1—C2—C6110.88 (10)C9—C10—H10A109.0
N3—C2—C10110.55 (9)C2—C10—H10A109.0
N1—C2—C10111.11 (10)C9—C10—H10B109.0
C6—C2—C10109.97 (10)C2—C10—H10B109.0
C4—N3—C2113.89 (9)H10A—C10—H10B107.8
C4—N3—H3123.1 (10)C12—C11—C5112.13 (11)
C2—N3—H3122.6 (10)C12—C11—H11A109.2
O1—C4—N3126.68 (11)C5—C11—H11A109.2
O1—C4—C5125.05 (11)C12—C11—H11B109.2
N3—C4—C5108.25 (10)C5—C11—H11B109.2
N1—C5—C15111.71 (11)H11A—C11—H11B107.9
N1—C5—C4103.74 (9)C13—C12—C11110.91 (12)
C15—C5—C4111.26 (10)C13—C12—H12A109.5
N1—C5—C11112.27 (11)C11—C12—H12A109.5
C15—C5—C11109.53 (10)C13—C12—H12B109.5
C4—C5—C11108.18 (10)C11—C12—H12B109.5
C2—C6—C7112.42 (11)H12A—C12—H12B108.0
C2—C6—H6A109.1C14—C13—C12111.04 (12)
C7—C6—H6A109.1C14—C13—H13A109.4
C2—C6—H6B109.1C12—C13—H13A109.4
C7—C6—H6B109.1C14—C13—H13B109.4
H6A—C6—H6B107.9C12—C13—H13B109.4
C8—C7—C6111.17 (12)H13A—C13—H13B108.0
C8—C7—H7A109.4C13—C14—C15111.62 (12)
C6—C7—H7A109.4C13—C14—H14A109.3
C8—C7—H7B109.4C15—C14—H14A109.3
C6—C7—H7B109.4C13—C14—H14B109.3
H7A—C7—H7B108.0C15—C14—H14B109.3
C7—C8—C9110.33 (12)H14A—C14—H14B108.0
C7—C8—H8A109.6C5—C15—C14112.45 (11)
C9—C8—H8A109.6C5—C15—H15A109.1
C7—C8—H8B109.6C14—C15—H15A109.1
C9—C8—H8B109.6C5—C15—H15B109.1
H8A—C8—H8B108.1C14—C15—H15B109.1
C8—C9—C10111.04 (12)H15A—C15—H15B107.8
C8—C9—H9A109.4
C5—N1—C2—N313.53 (13)C10—C2—C6—C753.21 (14)
C5—N1—C2—C6132.50 (11)C2—C6—C7—C855.77 (16)
C5—N1—C2—C10104.88 (12)C6—C7—C8—C956.55 (17)
N1—C2—N3—C49.88 (14)C7—C8—C9—C1056.59 (17)
C6—C2—N3—C4128.68 (11)C8—C9—C10—C255.99 (16)
C10—C2—N3—C4108.91 (12)N3—C2—C10—C969.59 (14)
C2—N3—C4—O1176.02 (12)N1—C2—C10—C9176.64 (11)
C2—N3—C4—C52.38 (14)C6—C2—C10—C953.49 (14)
C2—N1—C5—C15132.29 (11)N1—C5—C11—C1269.59 (14)
C2—N1—C5—C412.35 (13)C15—C5—C11—C1255.11 (15)
C2—N1—C5—C11104.22 (12)C4—C5—C11—C12176.55 (11)
O1—C4—C5—N1175.37 (12)C5—C11—C12—C1356.86 (16)
N3—C4—C5—N16.20 (13)C11—C12—C13—C1456.04 (17)
O1—C4—C5—C1555.12 (17)C12—C13—C14—C1554.99 (18)
N3—C4—C5—C15126.44 (12)N1—C5—C15—C1471.20 (15)
O1—C4—C5—C1165.24 (16)C4—C5—C15—C14173.39 (12)
N3—C4—C5—C11113.19 (12)C11—C5—C15—C1453.83 (15)
N3—C2—C6—C769.54 (14)C13—C14—C15—C554.77 (17)
N1—C2—C6—C7176.48 (11)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.87 (2)2.02 (2)2.8821 (14)172 (1)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.87 (2)2.02 (2)2.8821 (14)172 (1)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Acknowledgements top

TK thanks the CSIR, India, for financial support in the form of a Senior Research Fellowship. SP thanks the UGC, India, for financial support.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brummer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tsao, T. C., Williams, D. E., Worley, C. G. & Worley, S. D. (1991). Biotechnol. Prog. 7, 60–66.

Wang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181–1184.