organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8,9-Dimeth­­oxy-5-phenyl­sulfonyl-5H-benzo[b]carbazole

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 March 2010; accepted 2 April 2010; online 14 April 2010)

In the title compound, C24H19NO4S, the benzocarbazole ring system is planar (r.m.s. deviation = 0.016 Å) and forms a dihedral angle of 78.54 (4)° with the sulfonyl-bound phenyl ring. Intra­molecular C—H⋯O inter­actions are observed. A C(8) chain running along the b axis is formed via inter­molecular C—H⋯O hydrogen bonds. The chains are linked via weak C—H⋯ π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the biological activity of carbazole derivatives, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Tachibana et al. (2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). For related structures, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667-o1668.]); Govindasamy et al. (1998[Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277-279.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19NO4S

  • Mr = 417.46

  • Triclinic, [P \overline 1]

  • a = 7.8606 (2) Å

  • b = 9.5892 (2) Å

  • c = 13.8846 (4) Å

  • α = 100.387 (1)°

  • β = 93.168 (2)°

  • γ = 105.883 (1)°

  • V = 984.05 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.962

  • 26246 measured reflections

  • 7025 independent reflections

  • 5372 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.04

  • 7025 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1 0.93 2.34 2.9238 (19) 120
C6—H6⋯O2 0.93 2.37 2.9674 (15) 122
C2—H2⋯O2i 0.93 2.55 3.3361 (17) 143
C24—H24CCg1ii 0.96 2.84 3.727 (2) 154
C25—H25ACg2iii 0.96 2.90 3.628 (2) 134
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z; (iii) -x+2, -y, -z. Cg1 and Cg2 are the centroids of the C7–C10/C22/C23 and C1–C4/C21/C20 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole and its derivatives are considered as potential compounds owing to their applications in pharmacy and molecular electronics. They also possess various biological activities such as antitumor (Itoigawa et al., 2000), antioxidative (Tachibana et al., 2001), anti-inflammatory and antimutagenic (Ramsewak et al., 1999) properties.

The benzocarbazole ring system is planar (r.m.s. deviation 0.016 Å) and it forms a dihedral angle of 78.54 (4)° with the sulfonyl-bound phenyl ring (Fig.1). The N—C bond lengths, namely N5—C19 and N5—C21 [1.432 (1) & 1.436 (2) Å] deviate slightly from the mean value reported in the literature (1.370 (12) Å; Allen et al., 1987). This may be due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1998) substitued at N atom of the carbazole group. The S atom exhibits a distorted tetrahedral geometry. The widening of the O1—S1—O2 [119.60 (6)°] angle may be due to repulsive interactions between the two SO bonds (Chakkaravarthi et al., 2008). The sum of the bond angles around N1 [350.6°] indicate the sp2 hybridization. The methoxy groups substituted at C8 and C9 lie almost in the plane of the attached benzene ring [C7—C8—O3—C24 = -3.8 (2)° and C10—C9—O4—C25 = 6.8 (2)°].

The intermolecular C—H···O hydrogen bonds link the molecules into a C(8) chain running along the b axis (Fig.2). The packing of the molecules is further influenced by C—H··· π interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For the biological activity of carbazole derivatives, see: Itoigawa et al. (2000); Tachibana et al. (2001); Ramsewak et al. (1999). For related structures, see: Chakkaravarthi et al. (2008); Govindasamy et al. (1998).

Experimental top

To a solution of diethyl-2-[(2-bromomethyl-1-phenylsulfonyl-1H-indol-3-yl)methylene]malonate (0.41 g, 0.78 mmol) in dry 1,2-dichloroethane (15 ml), anhydrous ZnBr2 (0.35 g, 1.55 mmol) and veratrole (0.12 ml, 0.94 mmol) were added. The mixture was refluxed for 5 h under N2 atmosphere. The solvent was removed and the reaction mixture was quenched with ice-water (50 ml) containing 1 ml of conc. HCl, extracted with chloroform (2 × 10 ml) and dried (Na2SO4). Removal of the solvent followed by flash column chromatographic purification (n-hexane-ethyl acetate 99:1) led to the isolation of the title compound as a colourless solid. The compound was recrystallized from CDCl3.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C). A rotating group model was used for the methyl groups.

Structure description top

Carbazole and its derivatives are considered as potential compounds owing to their applications in pharmacy and molecular electronics. They also possess various biological activities such as antitumor (Itoigawa et al., 2000), antioxidative (Tachibana et al., 2001), anti-inflammatory and antimutagenic (Ramsewak et al., 1999) properties.

The benzocarbazole ring system is planar (r.m.s. deviation 0.016 Å) and it forms a dihedral angle of 78.54 (4)° with the sulfonyl-bound phenyl ring (Fig.1). The N—C bond lengths, namely N5—C19 and N5—C21 [1.432 (1) & 1.436 (2) Å] deviate slightly from the mean value reported in the literature (1.370 (12) Å; Allen et al., 1987). This may be due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1998) substitued at N atom of the carbazole group. The S atom exhibits a distorted tetrahedral geometry. The widening of the O1—S1—O2 [119.60 (6)°] angle may be due to repulsive interactions between the two SO bonds (Chakkaravarthi et al., 2008). The sum of the bond angles around N1 [350.6°] indicate the sp2 hybridization. The methoxy groups substituted at C8 and C9 lie almost in the plane of the attached benzene ring [C7—C8—O3—C24 = -3.8 (2)° and C10—C9—O4—C25 = 6.8 (2)°].

The intermolecular C—H···O hydrogen bonds link the molecules into a C(8) chain running along the b axis (Fig.2). The packing of the molecules is further influenced by C—H··· π interactions.

For bond-length data, see: Allen et al. (1987). For the biological activity of carbazole derivatives, see: Itoigawa et al. (2000); Tachibana et al. (2001); Ramsewak et al. (1999). For related structures, see: Chakkaravarthi et al. (2008); Govindasamy et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
8,9-Dimethoxy-5-phenylsulfonyl-5H-benzo[b]carbazole top
Crystal data top
C24H19NO4SZ = 2
Mr = 417.46F(000) = 436
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8606 (2) ÅCell parameters from 7025 reflections
b = 9.5892 (2) Åθ = 1.5–33.3°
c = 13.8846 (4) ŵ = 0.20 mm1
α = 100.387 (1)°T = 293 K
β = 93.168 (2)°Block, colourless
γ = 105.883 (1)°0.30 × 0.25 × 0.20 mm
V = 984.05 (4) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7025 independent reflections
Radiation source: fine-focus sealed tube5372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 33.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1211
Tmin = 0.943, Tmax = 0.962k = 1413
26246 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.1333P]
where P = (Fo2 + 2Fc2)/3
7025 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H19NO4Sγ = 105.883 (1)°
Mr = 417.46V = 984.05 (4) Å3
Triclinic, P1Z = 2
a = 7.8606 (2) ÅMo Kα radiation
b = 9.5892 (2) ŵ = 0.20 mm1
c = 13.8846 (4) ÅT = 293 K
α = 100.387 (1)°0.30 × 0.25 × 0.20 mm
β = 93.168 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7025 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5372 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.962Rint = 0.024
26246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
7025 reflectionsΔρmin = 0.25 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62768 (4)0.24308 (3)0.35159 (2)0.03860 (9)
O10.54424 (14)0.18104 (12)0.42890 (8)0.0543 (3)
O20.57390 (13)0.35798 (11)0.31820 (7)0.0483 (2)
O30.84578 (17)0.47850 (12)0.16011 (8)0.0580 (3)
O40.89925 (15)0.24214 (13)0.25315 (7)0.0566 (3)
C10.6666 (2)0.24922 (15)0.16579 (12)0.0538 (3)
H10.70180.29410.10830.065*
C20.6256 (2)0.32426 (16)0.24138 (14)0.0600 (4)
H20.63500.42000.23510.072*
C30.5710 (2)0.25904 (16)0.32592 (13)0.0543 (4)
H30.54400.31210.37570.065*
C40.55495 (18)0.11624 (15)0.33915 (11)0.0484 (3)
H40.51660.07320.39620.058*
N50.59104 (14)0.10465 (11)0.25487 (8)0.0387 (2)
C60.67353 (17)0.25195 (13)0.12110 (9)0.0386 (2)
H60.64860.33620.15420.046*
C70.76027 (18)0.37119 (14)0.01873 (9)0.0421 (3)
H70.73900.45720.01420.051*
C80.81631 (18)0.36643 (15)0.11016 (9)0.0430 (3)
C90.84830 (17)0.23465 (15)0.16184 (9)0.0432 (3)
C100.82608 (18)0.11485 (15)0.11883 (9)0.0442 (3)
H100.84900.03000.15250.053*
C110.74574 (18)0.00587 (13)0.02134 (10)0.0424 (3)
H110.76870.09130.01120.051*
C120.85883 (16)0.30130 (14)0.38223 (8)0.0386 (2)
C130.9589 (2)0.42875 (18)0.35613 (11)0.0530 (3)
H130.90450.48380.32280.064*
C141.1410 (2)0.4730 (2)0.38032 (12)0.0677 (5)
H141.21020.55920.36410.081*
C151.2202 (2)0.3895 (2)0.42836 (13)0.0687 (5)
H151.34290.41970.44450.082*
C161.1192 (3)0.2617 (2)0.45275 (15)0.0726 (5)
H161.17430.20550.48450.087*
C170.9365 (2)0.21628 (18)0.43036 (12)0.0575 (4)
H170.86740.13060.44730.069*
C180.68934 (16)0.00057 (12)0.11331 (9)0.0379 (2)
C190.65257 (15)0.12981 (12)0.16256 (8)0.0348 (2)
C200.65429 (16)0.10571 (13)0.17721 (10)0.0406 (2)
C210.59885 (15)0.04054 (13)0.26328 (10)0.0396 (2)
C220.76869 (16)0.11715 (13)0.02368 (9)0.0382 (2)
C230.73374 (16)0.24697 (12)0.02715 (8)0.0368 (2)
C240.8057 (3)0.60947 (18)0.11663 (13)0.0630 (4)
H24A0.68260.58600.10550.094*
H24B0.82870.67840.16000.094*
H24C0.87880.65280.05500.094*
C250.9127 (2)0.1091 (2)0.31191 (12)0.0639 (4)
H25A1.00280.07690.28050.096*
H25B0.94380.12640.37550.096*
H25C0.80050.03410.31950.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04190 (16)0.04201 (16)0.03897 (15)0.01777 (12)0.01525 (11)0.01425 (11)
O10.0600 (6)0.0618 (6)0.0504 (5)0.0199 (5)0.0287 (5)0.0245 (5)
O20.0553 (5)0.0502 (5)0.0523 (5)0.0299 (4)0.0170 (4)0.0168 (4)
O30.0840 (8)0.0512 (6)0.0463 (5)0.0219 (5)0.0177 (5)0.0221 (4)
O40.0694 (7)0.0673 (7)0.0392 (5)0.0250 (5)0.0174 (5)0.0151 (4)
C10.0658 (9)0.0351 (6)0.0620 (9)0.0165 (6)0.0024 (7)0.0124 (6)
C20.0685 (9)0.0359 (6)0.0768 (11)0.0123 (6)0.0037 (8)0.0224 (7)
C30.0503 (7)0.0453 (7)0.0676 (9)0.0041 (6)0.0019 (6)0.0296 (7)
C40.0456 (6)0.0460 (7)0.0551 (7)0.0068 (5)0.0065 (6)0.0241 (6)
N50.0430 (5)0.0359 (5)0.0405 (5)0.0118 (4)0.0081 (4)0.0140 (4)
C60.0494 (6)0.0326 (5)0.0367 (5)0.0152 (4)0.0084 (5)0.0084 (4)
C70.0546 (7)0.0358 (5)0.0382 (6)0.0146 (5)0.0078 (5)0.0103 (4)
C80.0482 (6)0.0444 (6)0.0377 (6)0.0121 (5)0.0051 (5)0.0134 (5)
C90.0442 (6)0.0520 (7)0.0340 (5)0.0147 (5)0.0057 (5)0.0088 (5)
C100.0513 (7)0.0448 (6)0.0381 (6)0.0186 (5)0.0072 (5)0.0044 (5)
C110.0524 (7)0.0340 (5)0.0428 (6)0.0173 (5)0.0050 (5)0.0054 (4)
C120.0426 (6)0.0437 (6)0.0313 (5)0.0159 (5)0.0085 (4)0.0052 (4)
C130.0522 (7)0.0612 (8)0.0453 (7)0.0092 (6)0.0095 (6)0.0198 (6)
C140.0506 (8)0.0878 (12)0.0531 (8)0.0009 (8)0.0129 (7)0.0152 (8)
C150.0437 (7)0.0943 (13)0.0579 (9)0.0186 (8)0.0040 (7)0.0083 (9)
C160.0676 (10)0.0737 (11)0.0762 (12)0.0361 (9)0.0170 (9)0.0025 (9)
C170.0611 (8)0.0498 (8)0.0610 (9)0.0184 (6)0.0082 (7)0.0106 (6)
C180.0411 (6)0.0313 (5)0.0414 (6)0.0105 (4)0.0015 (4)0.0084 (4)
C190.0370 (5)0.0329 (5)0.0356 (5)0.0105 (4)0.0036 (4)0.0089 (4)
C200.0416 (6)0.0327 (5)0.0477 (6)0.0089 (4)0.0004 (5)0.0127 (5)
C210.0359 (5)0.0349 (5)0.0482 (6)0.0065 (4)0.0014 (5)0.0157 (5)
C220.0417 (6)0.0369 (5)0.0362 (5)0.0129 (4)0.0036 (4)0.0060 (4)
C230.0425 (6)0.0337 (5)0.0344 (5)0.0112 (4)0.0042 (4)0.0074 (4)
C240.0872 (12)0.0493 (8)0.0610 (9)0.0243 (8)0.0164 (8)0.0236 (7)
C250.0695 (10)0.0806 (11)0.0418 (7)0.0277 (8)0.0139 (7)0.0017 (7)
Geometric parameters (Å, º) top
S1—O21.4231 (10)C9—C101.3623 (19)
S1—O21.4231 (10)C10—C221.4177 (17)
S1—O11.4251 (9)C10—H100.93
S1—O11.4251 (9)C11—C181.3712 (17)
S1—N51.6594 (11)C11—C221.4060 (17)
S1—C121.7515 (13)C11—H110.93
O3—C81.3564 (15)C12—C171.3811 (19)
O3—C241.416 (2)C12—C131.3816 (19)
O4—C91.3587 (15)C13—C141.380 (2)
O4—C251.4183 (19)C13—H130.93
C1—C21.381 (2)C14—C151.376 (3)
C1—C201.3872 (18)C14—H140.93
C1—H10.93C15—C161.376 (3)
C2—C31.375 (3)C15—H150.93
C2—H20.93C16—C171.381 (2)
C3—C41.390 (2)C16—H160.93
C3—H30.93C17—H170.93
C4—C211.3909 (17)C18—C191.4139 (16)
C4—H40.93C18—C201.4494 (16)
N5—C191.4321 (14)C20—C211.3950 (19)
N5—C211.4355 (15)C22—C231.4196 (17)
C6—C191.3705 (15)C24—H24A0.96
C6—C231.4093 (16)C24—H24B0.96
C6—H60.93C24—H24C0.96
C7—C81.3637 (17)C25—H25A0.96
C7—C231.4215 (16)C25—H25B0.96
C7—H70.93C25—H25C0.96
C8—C91.4289 (19)
O2—S1—O1119.60 (6)C14—C13—C12118.85 (16)
O2—S1—N5106.42 (6)C14—C13—H13120.6
O1—S1—N5106.38 (6)C12—C13—H13120.6
O2—S1—C12109.08 (6)C15—C14—C13120.03 (17)
O2—S1—C12109.08 (6)C15—C14—H14120.0
O1—S1—C12109.33 (6)C13—C14—H14120.0
O1—S1—C12109.33 (6)C14—C15—C16120.53 (15)
N5—S1—C12105.02 (5)C14—C15—H15119.7
C8—O3—C24117.66 (12)C16—C15—H15119.7
C9—O4—C25116.75 (12)C15—C16—C17120.44 (17)
C2—C1—C20118.78 (15)C15—C16—H16119.8
C2—C1—H1120.6C17—C16—H16119.8
C20—C1—H1120.6C12—C17—C16118.38 (16)
C3—C2—C1120.75 (14)C12—C17—H17120.8
C3—C2—H2119.6C16—C17—H17120.8
C1—C2—H2119.6C11—C18—C19120.27 (11)
C2—C3—C4121.93 (14)C11—C18—C20132.36 (11)
C2—C3—H3119.0C19—C18—C20107.37 (11)
C4—C3—H3119.0C6—C19—C18121.62 (11)
C3—C4—C21117.01 (15)C6—C19—N5129.82 (10)
C3—C4—H4121.5C18—C19—N5108.55 (9)
C21—C4—H4121.5C1—C20—C21120.01 (12)
C19—N5—C21107.00 (9)C1—C20—C18131.88 (13)
C19—N5—S1120.99 (8)C21—C20—C18108.10 (11)
C21—N5—S1122.60 (8)C4—C21—C20121.51 (12)
C19—C6—C23118.47 (11)C4—C21—N5129.56 (13)
C19—C6—H6120.8C20—C21—N5108.88 (10)
C23—C6—H6120.8C11—C22—C10121.58 (11)
C8—C7—C23121.15 (12)C11—C22—C23119.36 (11)
C8—C7—H7119.4C10—C22—C23119.06 (11)
C23—C7—H7119.4C6—C23—C22120.47 (11)
O3—C8—C7125.72 (13)C6—C23—C7120.86 (11)
O3—C8—C9114.26 (11)C22—C23—C7118.67 (11)
C7—C8—C9120.02 (12)O3—C24—H24A109.5
O4—C9—C10125.54 (12)O3—C24—H24B109.5
O4—C9—C8114.56 (12)H24A—C24—H24B109.5
C10—C9—C8119.89 (12)O3—C24—H24C109.5
C9—C10—C22121.20 (12)H24A—C24—H24C109.5
C9—C10—H10119.4H24B—C24—H24C109.5
C22—C10—H10119.4O4—C25—H25A109.5
C18—C11—C22119.80 (11)O4—C25—H25B109.5
C18—C11—H11120.1H25A—C25—H25B109.5
C22—C11—H11120.1O4—C25—H25C109.5
C17—C12—C13121.76 (13)H25A—C25—H25C109.5
C17—C12—S1118.76 (11)H25B—C25—H25C109.5
C13—C12—S1119.47 (11)
O2—S1—O1—O10.00 (16)C13—C14—C15—C160.0 (3)
O2—S1—O1—O10.00 (16)C14—C15—C16—C170.8 (3)
N5—S1—O1—O10.00 (14)C13—C12—C17—C160.2 (2)
C12—S1—O1—O10.00 (17)S1—C12—C17—C16178.91 (12)
O1—S1—O2—O20.00 (14)C15—C16—C17—C120.7 (3)
O1—S1—O2—O20.00 (14)C22—C11—C18—C190.61 (19)
N5—S1—O2—O20.00 (15)C22—C11—C18—C20179.99 (12)
C12—S1—O2—O20.00 (16)C23—C6—C19—C180.16 (18)
C20—C1—C2—C30.9 (2)C23—C6—C19—N5178.68 (11)
C1—C2—C3—C40.1 (2)C11—C18—C19—C60.69 (18)
C2—C3—C4—C210.8 (2)C20—C18—C19—C6179.78 (11)
O2—S1—N5—C1949.36 (10)C11—C18—C19—N5178.11 (11)
O2—S1—N5—C1949.36 (10)C20—C18—C19—N51.42 (13)
O1—S1—N5—C19177.92 (9)C21—N5—C19—C6178.66 (12)
O1—S1—N5—C19177.92 (9)S1—N5—C19—C631.42 (17)
C12—S1—N5—C1966.23 (10)C21—N5—C19—C182.67 (12)
O2—S1—N5—C21168.55 (9)S1—N5—C19—C18149.90 (9)
O2—S1—N5—C21168.55 (9)C2—C1—C20—C210.9 (2)
O1—S1—N5—C2139.99 (11)C2—C1—C20—C18179.24 (14)
O1—S1—N5—C2139.99 (11)C11—C18—C20—C10.0 (2)
C12—S1—N5—C2175.86 (10)C19—C18—C20—C1179.45 (14)
C24—O3—C8—C73.8 (2)C11—C18—C20—C21179.87 (13)
C24—O3—C8—C9175.91 (13)C19—C18—C20—C210.41 (13)
C23—C7—C8—O3179.89 (12)C3—C4—C21—C200.81 (19)
C23—C7—C8—C90.4 (2)C3—C4—C21—N5178.13 (12)
C25—O4—C9—C106.8 (2)C1—C20—C21—C40.02 (19)
C25—O4—C9—C8172.91 (13)C18—C20—C21—C4179.91 (11)
O3—C8—C9—O41.32 (17)C1—C20—C21—N5177.80 (12)
C7—C8—C9—O4178.41 (12)C18—C20—C21—N52.09 (13)
O3—C8—C9—C10179.00 (12)C19—N5—C21—C4179.47 (12)
C7—C8—C9—C101.3 (2)S1—N5—C21—C432.88 (17)
O4—C9—C10—C22178.64 (12)C19—N5—C21—C202.94 (13)
C8—C9—C10—C221.0 (2)S1—N5—C21—C20149.53 (9)
O2—S1—C12—C17170.30 (11)C18—C11—C22—C10179.74 (11)
O2—S1—C12—C17170.30 (11)C18—C11—C22—C230.28 (19)
O1—S1—C12—C1737.83 (12)C9—C10—C22—C11179.87 (12)
O1—S1—C12—C1737.83 (12)C9—C10—C22—C230.11 (19)
N5—S1—C12—C1775.97 (12)C19—C6—C23—C221.07 (18)
O2—S1—C12—C1310.97 (13)C19—C6—C23—C7179.10 (12)
O2—S1—C12—C1310.97 (13)C11—C22—C23—C61.14 (18)
O1—S1—C12—C13143.44 (11)C10—C22—C23—C6178.88 (11)
O1—S1—C12—C13143.44 (11)C11—C22—C23—C7179.02 (12)
N5—S1—C12—C13102.76 (11)C10—C22—C23—C70.95 (18)
C17—C12—C13—C141.0 (2)C8—C7—C23—C6179.15 (12)
S1—C12—C13—C14179.69 (12)C8—C7—C23—C220.7 (2)
C12—C13—C14—C150.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.342.9238 (19)120
C6—H6···O20.932.372.9674 (15)122
C2—H2···O2i0.932.553.3361 (17)143
C24—H24C···Cg1ii0.962.843.727 (2)154
C25—H25A···Cg2iii0.962.903.628 (2)134
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC24H19NO4S
Mr417.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8606 (2), 9.5892 (2), 13.8846 (4)
α, β, γ (°)100.387 (1), 93.168 (2), 105.883 (1)
V3)984.05 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.943, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
26246, 7025, 5372
Rint0.024
(sin θ/λ)max1)0.773
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.04
No. of reflections7025
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.342.9238 (19)120
C6—H6···O20.932.372.9674 (15)122
C2—H2···O2i0.932.553.3361 (17)143
C24—H24C···Cg1ii0.962.843.7272 (21)154
C25—H25A···Cg2iii0.962.903.6276 (21)134
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+2, y, z.
 

Acknowledgements

TK thanks the CSIR, India, for financial support in the form of a senior research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667–o1668.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGovindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277–279.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds