supplementary materials


ci5072 scheme

Acta Cryst. (2010). E66, o1024    [ doi:10.1107/S1600536810012067 ]

N-Benzoyl-2-methylbenzenesulfonamide

P. A. Suchetan, B. T. Gowda, S. Foro and H. Fuess

Abstract top

In the title compound, C14H13NO3S, the conformation of the N-H bond in the C-SO2-NH-C(O) segment is anti to the C=O bond. The tolyl and benzoyl groups are twisted about the S-N bond, with a C-S-N-C torsion angle of 68.8 (4)°. The dihedral angle between the sulfonyl and the benzoyl benzene rings is 73.9 (1)°. In the crystal, the molecules are linked into C(4) chains along the c axis by N-H...O hydrogen bonds.

Comment top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2010), the structure of N-(benzoyl)2-methylbenzenesulfonamide, (I), has been determined.

The conformation of the N–H bond in the C—SO2—NH—C(O) segment is anti to the CO bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)2-chlorobenzenesulfonamide (III) (Gowda et al., 2010) and N-(benzoyl)4-methylbenzenesulfonamide (IV) (Suchetan et al., 2010).

The sulfonyl-bound tolyl and benzoyl groups are twisted about the S—N bond with a C1—S1—N1—C7 torsional angle of 68.8 (4)°, compared to 66.7 (2)° in (III) and 73.2 (2)° in (IV). The dihedral angle between the sulfonyl and the benzoyl benzene rings is 73.9 (1)°, compared to the values of 80.3(0.1) in (II), 73.3 (1)° in (III) and 79.4 (1)° in (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background literature and similar structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of benzoic acid (0.02 mol), 2-methylbenzenesulfonamide (0.02 mol) and excess phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(benzoyl)-2-methyl-benzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in a sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and refined with a N–H distance restraint of 0.86 (3) %A. The other H atoms were positioned with idealized geometry using a riding model with C–H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-Benzoyl-2-methylbenzenesulfonamide top
Crystal data top
C14H13NO3SF(000) = 576
Mr = 275.31Dx = 1.380 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2401 reflections
a = 19.772 (2) Åθ = 3.1–27.9°
b = 11.894 (1) ŵ = 0.25 mm1
c = 5.6368 (5) ÅT = 299 K
V = 1325.6 (2) Å3Rod, colourless
Z = 40.30 × 0.18 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2028 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
graphiteRint = 0.029
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2424
Tmin = 0.930, Tmax = 0.990k = 1411
4891 measured reflectionsl = 57
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.4459P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
2028 reflectionsΔρmax = 0.52 e Å3
176 parametersΔρmin = 0.38 e Å3
2 restraintsAbsolute structure: Flack (1983), 541 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.11 (15)
Crystal data top
C14H13NO3SV = 1325.6 (2) Å3
Mr = 275.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.772 (2) ŵ = 0.25 mm1
b = 11.894 (1) ÅT = 299 K
c = 5.6368 (5) Å0.30 × 0.18 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2028 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1760 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.990Rint = 0.029
4891 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132Δρmax = 0.52 e Å3
S = 1.18Δρmin = 0.38 e Å3
2028 reflectionsAbsolute structure: Flack (1983), 541 Friedel pairs
176 parametersFlack parameter: 0.11 (15)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01516 (5)0.66278 (7)0.7707 (2)0.0435 (3)
O10.02885 (13)0.56674 (19)0.7833 (7)0.0557 (8)
O20.05286 (16)0.6940 (3)0.9718 (6)0.0641 (9)
O30.12916 (15)0.7901 (2)0.5428 (7)0.0668 (9)
N10.06761 (16)0.6295 (3)0.5573 (7)0.0452 (9)
H1N0.058 (2)0.578 (3)0.469 (7)0.054*
C10.03320 (19)0.7795 (3)0.6767 (8)0.0419 (9)
C20.07765 (19)0.7733 (3)0.4882 (8)0.0462 (9)
C30.1141 (2)0.8708 (4)0.4372 (10)0.0660 (14)
H30.14390.87100.30950.079*
C40.1069 (3)0.9667 (4)0.5716 (12)0.0715 (15)
H40.13201.03040.53380.086*
C50.0643 (3)0.9694 (3)0.7562 (12)0.0686 (14)
H50.06041.03440.84690.082*
C60.0263 (2)0.8761 (3)0.8122 (9)0.0542 (12)
H60.00370.87790.93930.065*
C70.12242 (19)0.6934 (3)0.4833 (8)0.0467 (10)
C80.17044 (19)0.6327 (3)0.3244 (8)0.0458 (10)
C90.1851 (2)0.5197 (3)0.3616 (10)0.0549 (11)
H90.16520.48080.48640.066*
C100.2297 (2)0.4660 (4)0.2110 (12)0.0692 (15)
H100.24020.39080.23760.083*
C110.2586 (2)0.5202 (4)0.0250 (13)0.0754 (15)
H110.28760.48210.07710.091*
C120.2444 (2)0.6331 (5)0.0109 (11)0.0715 (14)
H120.26410.67130.13710.086*
C130.2012 (2)0.6883 (4)0.1397 (10)0.0616 (12)
H130.19260.76440.11660.074*
C140.0893 (3)0.6700 (4)0.3393 (9)0.0638 (14)
H14A0.11020.61280.43420.077*
H14B0.04670.64280.28040.077*
H14C0.11820.68840.20820.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0501 (5)0.0380 (4)0.0425 (5)0.0008 (4)0.0026 (6)0.0032 (5)
O10.0651 (17)0.0372 (12)0.065 (2)0.0059 (10)0.005 (2)0.0136 (16)
O20.0712 (19)0.0661 (17)0.055 (2)0.0070 (16)0.0160 (17)0.0020 (17)
O30.0731 (19)0.0327 (12)0.095 (3)0.0069 (13)0.011 (2)0.0074 (16)
N10.0459 (18)0.0366 (15)0.053 (2)0.0042 (13)0.0025 (18)0.0071 (16)
C10.0450 (19)0.0377 (18)0.043 (2)0.0016 (14)0.0079 (18)0.0020 (16)
C20.046 (2)0.045 (2)0.048 (3)0.0009 (16)0.002 (2)0.0005 (19)
C30.059 (3)0.065 (3)0.075 (4)0.013 (2)0.006 (3)0.011 (3)
C40.069 (3)0.050 (2)0.095 (5)0.017 (2)0.004 (3)0.006 (3)
C50.081 (3)0.0373 (19)0.087 (4)0.0009 (19)0.026 (4)0.009 (3)
C60.061 (3)0.0428 (18)0.058 (4)0.0068 (17)0.004 (2)0.010 (2)
C70.047 (2)0.0415 (19)0.052 (3)0.0001 (16)0.002 (2)0.0041 (19)
C80.043 (2)0.0416 (18)0.052 (3)0.0011 (15)0.003 (2)0.0018 (17)
C90.052 (2)0.0411 (19)0.072 (3)0.0015 (17)0.000 (2)0.0031 (19)
C100.056 (2)0.053 (2)0.098 (5)0.0040 (19)0.007 (3)0.009 (3)
C110.060 (3)0.085 (3)0.082 (4)0.006 (3)0.002 (3)0.022 (4)
C120.057 (3)0.095 (3)0.063 (3)0.001 (3)0.013 (3)0.013 (3)
C130.056 (3)0.060 (2)0.069 (3)0.006 (2)0.001 (3)0.015 (2)
C140.070 (3)0.067 (3)0.055 (3)0.001 (2)0.012 (2)0.008 (2)
Geometric parameters (Å, °) top
S1—O21.407 (3)C6—H60.93
S1—O11.438 (2)C7—C81.491 (6)
S1—N11.637 (4)C8—C131.375 (6)
S1—C11.767 (4)C8—C91.392 (5)
O3—C71.206 (5)C9—C101.380 (7)
N1—C71.387 (5)C9—H90.93
N1—H1N0.81 (3)C10—C111.357 (9)
C1—C21.381 (6)C10—H100.93
C1—C61.386 (6)C11—C121.387 (7)
C2—C31.395 (6)C11—H110.93
C2—C141.505 (6)C12—C131.371 (7)
C3—C41.377 (7)C12—H120.93
C3—H30.93C13—H130.93
C4—C51.339 (8)C14—H14A0.96
C4—H40.93C14—H14B0.96
C5—C61.377 (6)C14—H14C0.96
C5—H50.93
O2—S1—O1119.4 (2)O3—C7—N1121.7 (4)
O2—S1—N1108.70 (19)O3—C7—C8123.9 (4)
O1—S1—N1103.17 (18)N1—C7—C8114.4 (3)
O2—S1—C1108.7 (2)C13—C8—C9119.1 (4)
O1—S1—C1108.14 (17)C13—C8—C7120.3 (4)
N1—S1—C1108.21 (19)C9—C8—C7120.6 (4)
C7—N1—S1125.7 (3)C10—C9—C8119.2 (4)
C7—N1—H1N115 (3)C10—C9—H9120.4
S1—N1—H1N119 (3)C8—C9—H9120.4
C2—C1—C6122.1 (4)C11—C10—C9121.6 (4)
C2—C1—S1122.2 (3)C11—C10—H10119.2
C6—C1—S1115.6 (3)C9—C10—H10119.2
C1—C2—C3116.3 (4)C10—C11—C12119.2 (5)
C1—C2—C14124.7 (4)C10—C11—H11120.4
C3—C2—C14119.0 (4)C12—C11—H11120.4
C4—C3—C2121.5 (5)C13—C12—C11120.0 (5)
C4—C3—H3119.2C13—C12—H12120.0
C2—C3—H3119.2C11—C12—H12120.0
C5—C4—C3120.8 (4)C12—C13—C8120.9 (4)
C5—C4—H4119.6C12—C13—H13119.5
C3—C4—H4119.6C8—C13—H13119.5
C4—C5—C6120.2 (5)C2—C14—H14A109.5
C4—C5—H5119.9C2—C14—H14B109.5
C6—C5—H5119.9H14A—C14—H14B109.5
C5—C6—C1119.2 (5)C2—C14—H14C109.5
C5—C6—H6120.4H14A—C14—H14C109.5
C1—C6—H6120.4H14B—C14—H14C109.5
O2—S1—N1—C749.1 (4)C4—C5—C6—C10.6 (7)
O1—S1—N1—C7176.8 (3)C2—C1—C6—C50.7 (6)
C1—S1—N1—C768.8 (4)S1—C1—C6—C5177.4 (3)
O2—S1—C1—C2177.3 (3)S1—N1—C7—O313.8 (6)
O1—S1—C1—C246.3 (4)S1—N1—C7—C8167.0 (3)
N1—S1—C1—C264.8 (3)O3—C7—C8—C1336.2 (7)
O2—S1—C1—C60.5 (4)N1—C7—C8—C13143.0 (4)
O1—S1—C1—C6130.5 (3)O3—C7—C8—C9143.4 (5)
N1—S1—C1—C6118.4 (3)N1—C7—C8—C937.5 (6)
C6—C1—C2—C31.6 (6)C13—C8—C9—C100.6 (6)
S1—C1—C2—C3178.2 (3)C7—C8—C9—C10179.9 (4)
C6—C1—C2—C14177.9 (4)C8—C9—C10—C111.2 (7)
S1—C1—C2—C141.3 (6)C9—C10—C11—C121.7 (8)
C1—C2—C3—C41.4 (7)C10—C11—C12—C130.4 (8)
C14—C2—C3—C4178.1 (5)C11—C12—C13—C81.3 (8)
C2—C3—C4—C50.2 (8)C9—C8—C13—C121.8 (7)
C3—C4—C5—C60.9 (8)C7—C8—C13—C12178.6 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.09 (3)2.902 (4)172 (5)
Symmetry codes: (i) −x, −y+1, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.09 (3)2.902 (4)172 (5)
Symmetry codes: (i) −x, −y+1, z−1/2.
Acknowledgements top

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

references
References top

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.

Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, BT5236