organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-2-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 29 March 2010; accepted 30 March 2010; online 2 April 2010)

In the title compound, C14H13NO3S, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The tolyl and benzoyl groups are twisted about the S—N bond, with a C—S—N—C torsion angle of 68.8 (4)°. The dihedral angle between the sulfonyl and the benzoyl benzene rings is 73.9 (1)°. In the crystal, the mol­ecules are linked into C(4) chains along the c axis by N—H⋯O hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.], 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.]); Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3S

  • Mr = 275.31

  • Orthorhombic, P n a 21

  • a = 19.772 (2) Å

  • b = 11.894 (1) Å

  • c = 5.6368 (5) Å

  • V = 1325.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 299 K

  • 0.30 × 0.18 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.930, Tmax = 0.990

  • 4891 measured reflections

  • 2028 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.132

  • S = 1.18

  • 2028 reflections

  • 176 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 541 Friedel pairs

  • Flack parameter: −0.11 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.81 (3) 2.09 (3) 2.902 (4) 172 (5)
Symmetry code: (i) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2010), the structure of N-(benzoyl)2-methylbenzenesulfonamide, (I), has been determined.

The conformation of the N–H bond in the C—SO2—NH—C(O) segment is anti to the CO bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)2-chlorobenzenesulfonamide (III) (Gowda et al., 2010) and N-(benzoyl)4-methylbenzenesulfonamide (IV) (Suchetan et al., 2010).

The sulfonyl-bound tolyl and benzoyl groups are twisted about the S—N bond with a C1—S1—N1—C7 torsional angle of 68.8 (4)°, compared to 66.7 (2)° in (III) and 73.2 (2)° in (IV). The dihedral angle between the sulfonyl and the benzoyl benzene rings is 73.9 (1)°, compared to the values of 80.3(0.1) in (II), 73.3 (1)° in (III) and 79.4 (1)° in (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background literature and similar structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of benzoic acid (0.02 mol), 2-methylbenzenesulfonamide (0.02 mol) and excess phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(benzoyl)-2-methyl-benzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in a sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and refined with a N–H distance restraint of 0.86 (3) %A. The other H atoms were positioned with idealized geometry using a riding model with C–H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2010), the structure of N-(benzoyl)2-methylbenzenesulfonamide, (I), has been determined.

The conformation of the N–H bond in the C—SO2—NH—C(O) segment is anti to the CO bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)2-chlorobenzenesulfonamide (III) (Gowda et al., 2010) and N-(benzoyl)4-methylbenzenesulfonamide (IV) (Suchetan et al., 2010).

The sulfonyl-bound tolyl and benzoyl groups are twisted about the S—N bond with a C1—S1—N1—C7 torsional angle of 68.8 (4)°, compared to 66.7 (2)° in (III) and 73.2 (2)° in (IV). The dihedral angle between the sulfonyl and the benzoyl benzene rings is 73.9 (1)°, compared to the values of 80.3(0.1) in (II), 73.3 (1)° in (III) and 79.4 (1)° in (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For background literature and similar structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-Benzoyl-2-methylbenzenesulfonamide top
Crystal data top
C14H13NO3SF(000) = 576
Mr = 275.31Dx = 1.380 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2401 reflections
a = 19.772 (2) Åθ = 3.1–27.9°
b = 11.894 (1) ŵ = 0.25 mm1
c = 5.6368 (5) ÅT = 299 K
V = 1325.6 (2) Å3Rod, colourless
Z = 40.30 × 0.18 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2028 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2424
Tmin = 0.930, Tmax = 0.990k = 1411
4891 measured reflectionsl = 57
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.4459P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
2028 reflectionsΔρmax = 0.52 e Å3
176 parametersΔρmin = 0.38 e Å3
2 restraintsAbsolute structure: Flack (1983), 541 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (15)
Crystal data top
C14H13NO3SV = 1325.6 (2) Å3
Mr = 275.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.772 (2) ŵ = 0.25 mm1
b = 11.894 (1) ÅT = 299 K
c = 5.6368 (5) Å0.30 × 0.18 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2028 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1760 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.990Rint = 0.029
4891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132Δρmax = 0.52 e Å3
S = 1.18Δρmin = 0.38 e Å3
2028 reflectionsAbsolute structure: Flack (1983), 541 Friedel pairs
176 parametersAbsolute structure parameter: 0.11 (15)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01516 (5)0.66278 (7)0.7707 (2)0.0435 (3)
O10.02885 (13)0.56674 (19)0.7833 (7)0.0557 (8)
O20.05286 (16)0.6940 (3)0.9718 (6)0.0641 (9)
O30.12916 (15)0.7901 (2)0.5428 (7)0.0668 (9)
N10.06761 (16)0.6295 (3)0.5573 (7)0.0452 (9)
H1N0.058 (2)0.578 (3)0.469 (7)0.054*
C10.03320 (19)0.7795 (3)0.6767 (8)0.0419 (9)
C20.07765 (19)0.7733 (3)0.4882 (8)0.0462 (9)
C30.1141 (2)0.8708 (4)0.4372 (10)0.0660 (14)
H30.14390.87100.30950.079*
C40.1069 (3)0.9667 (4)0.5716 (12)0.0715 (15)
H40.13201.03040.53380.086*
C50.0643 (3)0.9694 (3)0.7562 (12)0.0686 (14)
H50.06041.03440.84690.082*
C60.0263 (2)0.8761 (3)0.8122 (9)0.0542 (12)
H60.00370.87790.93930.065*
C70.12242 (19)0.6934 (3)0.4833 (8)0.0467 (10)
C80.17044 (19)0.6327 (3)0.3244 (8)0.0458 (10)
C90.1851 (2)0.5197 (3)0.3616 (10)0.0549 (11)
H90.16520.48080.48640.066*
C100.2297 (2)0.4660 (4)0.2110 (12)0.0692 (15)
H100.24020.39080.23760.083*
C110.2586 (2)0.5202 (4)0.0250 (13)0.0754 (15)
H110.28760.48210.07710.091*
C120.2444 (2)0.6331 (5)0.0109 (11)0.0715 (14)
H120.26410.67130.13710.086*
C130.2012 (2)0.6883 (4)0.1397 (10)0.0616 (12)
H130.19260.76440.11660.074*
C140.0893 (3)0.6700 (4)0.3393 (9)0.0638 (14)
H14A0.11020.61280.43420.077*
H14B0.04670.64280.28040.077*
H14C0.11820.68840.20820.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0501 (5)0.0380 (4)0.0425 (5)0.0008 (4)0.0026 (6)0.0032 (5)
O10.0651 (17)0.0372 (12)0.065 (2)0.0059 (10)0.005 (2)0.0136 (16)
O20.0712 (19)0.0661 (17)0.055 (2)0.0070 (16)0.0160 (17)0.0020 (17)
O30.0731 (19)0.0327 (12)0.095 (3)0.0069 (13)0.011 (2)0.0074 (16)
N10.0459 (18)0.0366 (15)0.053 (2)0.0042 (13)0.0025 (18)0.0071 (16)
C10.0450 (19)0.0377 (18)0.043 (2)0.0016 (14)0.0079 (18)0.0020 (16)
C20.046 (2)0.045 (2)0.048 (3)0.0009 (16)0.002 (2)0.0005 (19)
C30.059 (3)0.065 (3)0.075 (4)0.013 (2)0.006 (3)0.011 (3)
C40.069 (3)0.050 (2)0.095 (5)0.017 (2)0.004 (3)0.006 (3)
C50.081 (3)0.0373 (19)0.087 (4)0.0009 (19)0.026 (4)0.009 (3)
C60.061 (3)0.0428 (18)0.058 (4)0.0068 (17)0.004 (2)0.010 (2)
C70.047 (2)0.0415 (19)0.052 (3)0.0001 (16)0.002 (2)0.0041 (19)
C80.043 (2)0.0416 (18)0.052 (3)0.0011 (15)0.003 (2)0.0018 (17)
C90.052 (2)0.0411 (19)0.072 (3)0.0015 (17)0.000 (2)0.0031 (19)
C100.056 (2)0.053 (2)0.098 (5)0.0040 (19)0.007 (3)0.009 (3)
C110.060 (3)0.085 (3)0.082 (4)0.006 (3)0.002 (3)0.022 (4)
C120.057 (3)0.095 (3)0.063 (3)0.001 (3)0.013 (3)0.013 (3)
C130.056 (3)0.060 (2)0.069 (3)0.006 (2)0.001 (3)0.015 (2)
C140.070 (3)0.067 (3)0.055 (3)0.001 (2)0.012 (2)0.008 (2)
Geometric parameters (Å, º) top
S1—O21.407 (3)C6—H60.93
S1—O11.438 (2)C7—C81.491 (6)
S1—N11.637 (4)C8—C131.375 (6)
S1—C11.767 (4)C8—C91.392 (5)
O3—C71.206 (5)C9—C101.380 (7)
N1—C71.387 (5)C9—H90.93
N1—H1N0.81 (3)C10—C111.357 (9)
C1—C21.381 (6)C10—H100.93
C1—C61.386 (6)C11—C121.387 (7)
C2—C31.395 (6)C11—H110.93
C2—C141.505 (6)C12—C131.371 (7)
C3—C41.377 (7)C12—H120.93
C3—H30.93C13—H130.93
C4—C51.339 (8)C14—H14A0.96
C4—H40.93C14—H14B0.96
C5—C61.377 (6)C14—H14C0.96
C5—H50.93
O2—S1—O1119.4 (2)O3—C7—N1121.7 (4)
O2—S1—N1108.70 (19)O3—C7—C8123.9 (4)
O1—S1—N1103.17 (18)N1—C7—C8114.4 (3)
O2—S1—C1108.7 (2)C13—C8—C9119.1 (4)
O1—S1—C1108.14 (17)C13—C8—C7120.3 (4)
N1—S1—C1108.21 (19)C9—C8—C7120.6 (4)
C7—N1—S1125.7 (3)C10—C9—C8119.2 (4)
C7—N1—H1N115 (3)C10—C9—H9120.4
S1—N1—H1N119 (3)C8—C9—H9120.4
C2—C1—C6122.1 (4)C11—C10—C9121.6 (4)
C2—C1—S1122.2 (3)C11—C10—H10119.2
C6—C1—S1115.6 (3)C9—C10—H10119.2
C1—C2—C3116.3 (4)C10—C11—C12119.2 (5)
C1—C2—C14124.7 (4)C10—C11—H11120.4
C3—C2—C14119.0 (4)C12—C11—H11120.4
C4—C3—C2121.5 (5)C13—C12—C11120.0 (5)
C4—C3—H3119.2C13—C12—H12120.0
C2—C3—H3119.2C11—C12—H12120.0
C5—C4—C3120.8 (4)C12—C13—C8120.9 (4)
C5—C4—H4119.6C12—C13—H13119.5
C3—C4—H4119.6C8—C13—H13119.5
C4—C5—C6120.2 (5)C2—C14—H14A109.5
C4—C5—H5119.9C2—C14—H14B109.5
C6—C5—H5119.9H14A—C14—H14B109.5
C5—C6—C1119.2 (5)C2—C14—H14C109.5
C5—C6—H6120.4H14A—C14—H14C109.5
C1—C6—H6120.4H14B—C14—H14C109.5
O2—S1—N1—C749.1 (4)C4—C5—C6—C10.6 (7)
O1—S1—N1—C7176.8 (3)C2—C1—C6—C50.7 (6)
C1—S1—N1—C768.8 (4)S1—C1—C6—C5177.4 (3)
O2—S1—C1—C2177.3 (3)S1—N1—C7—O313.8 (6)
O1—S1—C1—C246.3 (4)S1—N1—C7—C8167.0 (3)
N1—S1—C1—C264.8 (3)O3—C7—C8—C1336.2 (7)
O2—S1—C1—C60.5 (4)N1—C7—C8—C13143.0 (4)
O1—S1—C1—C6130.5 (3)O3—C7—C8—C9143.4 (5)
N1—S1—C1—C6118.4 (3)N1—C7—C8—C937.5 (6)
C6—C1—C2—C31.6 (6)C13—C8—C9—C100.6 (6)
S1—C1—C2—C3178.2 (3)C7—C8—C9—C10179.9 (4)
C6—C1—C2—C14177.9 (4)C8—C9—C10—C111.2 (7)
S1—C1—C2—C141.3 (6)C9—C10—C11—C121.7 (8)
C1—C2—C3—C41.4 (7)C10—C11—C12—C130.4 (8)
C14—C2—C3—C4178.1 (5)C11—C12—C13—C81.3 (8)
C2—C3—C4—C50.2 (8)C9—C8—C13—C121.8 (7)
C3—C4—C5—C60.9 (8)C7—C8—C13—C12178.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.09 (3)2.902 (4)172 (5)
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO3S
Mr275.31
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)299
a, b, c (Å)19.772 (2), 11.894 (1), 5.6368 (5)
V3)1325.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.18 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.930, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4891, 2028, 1760
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.132, 1.18
No. of reflections2028
No. of parameters176
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.38
Absolute structureFlack (1983), 541 Friedel pairs
Absolute structure parameter0.11 (15)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.09 (3)2.902 (4)172 (5)
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds