organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(3-Methyl­quinoxalin-2-yl­­oxy)eth­yl]-1,3-oxazolidin-2-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Avenue Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, bInstitute of Nanomaterial and Nanotechnology, Avenue Armée Royale, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: emessassi@yahoo.fr

(Received 27 March 2010; accepted 5 April 2010; online 10 April 2010)

Two isomers were isolated during the reaction between 3-methyl­quinoxalin-2-one and bis­(2-chloro­ethyl)amine hydro­chloride. The crystal structure of one isomer has already been reported [Caleb, Bouhfid, Essassi & El Ammari (2009). Acta Cryst. E65, o2024–o2025], while that of the second isomer is the subject of this work. The title compound, C14H15N3O3, has a new structure containing oxazolidine and quinoxaline rings linked by an eth­oxy group. The main difference between the two isomers is the position of the oxazolidine group with respect to the quinoxaline system. The dihedral angle between the fused planar rings and the oxazolidin-2-one ring is 41.63 (8)° in the title mol­ecule.

Related literature

For the biological activity of 3-[2-(3-methyl-1,2-dihydro­quin­oxalin-2-yl­oxy)eth­yl]oxazolidin-2-one, see: Madhusudhan et al. (2004[Madhusudhan, G., Om Reddy, G., Ramanathan, J. & Dubey, P. K. (2004). Indian J. Chem. Sect. B, 43, 957-963.]); Soad et al. (2006[Soad, A. M., El-Hawash, S. A., Abeer, E. & Wahab, A. (2006). Arch. Pharm. (Weinheim), 339, 437-447.]); Sriharsha & Shashikanth (2006[Sriharsha, S. N. & Shashikanth, S. J. (2006). Heterocycl. Commun. 12, 213-218.]); Menoret et al. (2009[Menoret, A., Mcaleer, J. P., Ngoi, S. M., Swagatam, R., Eddy, N. A., Fenteany, G., Lee, S. J., Rossi, R. J., Mukherji, B., Allen, D. L., Chakraborty, N. G. & Vella, A. T. (2009). J. Immunol. 183, 7489-7496.]); Wilhelmsson et al. (2008[Wilhelmsson, L. M., Kingi, N. & Bergman, J. (2008). J. Med. Chem. 51, 7744-7750.]). For the structure of the isomer of the title compound, see: Caleb et al. (2009[Caleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024-o2025.]). For related structures, see: Doubia et al. (2007[Doubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3305.]); Mamedov et al. (2007[Mamedov, V. A., Khafizova, E. A., Beschastnova, T. N., Zhukova, N. A., Gubaidullin, A. T., Rizvanov, I. Kh., Berdnikov, E. A. & Litvinov, I. A. (2007). Izv. Akad. Nauk SSSR Ser. Khim. (Russ.) (Russ. Chem. Bull.), 5, 1047-1048]); Aschwanden et al.(1976[Aschwanden, W., Kyburz, E. & Schonholzer, P. (1976). Helv. Chim. Acta, 59, 1245-1252.])

[Scheme 1]

Experimental

Crystal data
  • C14H15N3O3

  • Mr = 273.29

  • Triclinic, [P \overline 1]

  • a = 6.9936 (3) Å

  • b = 7.6916 (3) Å

  • c = 13.3709 (6) Å

  • α = 86.649 (2)°

  • β = 77.044 (2)°

  • γ = 71.141 (2)°

  • V = 663.23 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.41 × 0.33 × 0.20 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 15358 measured reflections

  • 3030 independent reflections

  • 2358 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.06

  • 3030 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Oxazolidin-2-ones and quinoxalines are subjets of numerous articles in scientific journals concerning the development of new molecules as drug candidates such as antibacterials (Madhusudhan et al. 2004); (Sriharsha & Shashikanth, 2006), anti-viral (Wilhelmsson, et al. 2008), anti-tumor (Soad et al.2006),and anti-inflammatory (Menoret et al. 2009). Our investigation is intended to increase the biological activity of such molecules. During the synthesis, two isomers were isolated, and the structure of isomer 1 has already been published (Caleb et al. 2009) while that of ismer 2 is the subject of the present work.

The structure of the 3-(2-(3-methyl-1,2-dihydro-quinoxalin-2-yloxy)ethoxy) oxazolidin-2-one molecule is also built up from two fused six-membered rings linked to a five-membered ring (oxazolidin-2-one) by an ethoxy group, as shown in Fig.1. It would be interesting to compare the crystal structures of both isomers of this compound (scheme 1). Actually, the geometric parameters (bond lenghths and angles) of the two isomers are very similar to those observed in other heterocyclic structures (Aschwanden et al., 1976; Doubia et al., 2007; Mamedov et al., 2007). However, the main difference between the two isomers is the position of the oxazolidine group with respect to the quinoxalin. Moreover, the dihedral angle between the fused six-membered rings and the five cycles measuring 20.04 (9)° in the isomer 1 instead of 41.63 (8)° in the isomer 2.

Related literature top

For the biological activity of 3-[2-(3-methyl-1,2-dihydroquinoxalin-2-yloxy)ethyl]oxazolidin-2-one, see: Madhusudhan et al. (2004); Soad et al. (2006); Sriharsha & Shashikanth (2006); Menoret et al. (2009); Wilhelmsson et al. (2008). For the structure of the isomer of the title compound, see: Caleb et al. (2009). For related structures, see: Doubia et al. (2007); Mamedov et al. (2007); Aschwanden et al.(1976).

Experimental top

In a 100 ml flask, is reacted 0.0125 moles of quinoxalin-2-one with 2.66 moles of dichloroethylamine hydrochloride in 40 ml of dimethyl formamide in presence of 2.87 moles of potassium carbonate and a few milligrams of tetran-butyl ammonium bromide. The mixture was brought to reflux in a sand bath, magnetic stirring and the reaction progress was monitored by thin layer chromatography. After evaporation of solvent under reduced pressure, the residue obtained is chromatographed on silica column (hexane / acetate: 4 / 6). Thus we have isolated two compounds. Recrystallization occurred in the same eluent. This compound was obtained in 38% and his melting point is 169°C.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.96 Å for methyl groups and C—H = 0.93 Å for all other hydrogens with Uiso(H) = 1.2 Ueq(aromatic, methine ) or Uiso(H) = 1.5 Ueq(methyl). All other H atoms were located from difference Fourier maps and refined without any distance restraints.

Structure description top

Oxazolidin-2-ones and quinoxalines are subjets of numerous articles in scientific journals concerning the development of new molecules as drug candidates such as antibacterials (Madhusudhan et al. 2004); (Sriharsha & Shashikanth, 2006), anti-viral (Wilhelmsson, et al. 2008), anti-tumor (Soad et al.2006),and anti-inflammatory (Menoret et al. 2009). Our investigation is intended to increase the biological activity of such molecules. During the synthesis, two isomers were isolated, and the structure of isomer 1 has already been published (Caleb et al. 2009) while that of ismer 2 is the subject of the present work.

The structure of the 3-(2-(3-methyl-1,2-dihydro-quinoxalin-2-yloxy)ethoxy) oxazolidin-2-one molecule is also built up from two fused six-membered rings linked to a five-membered ring (oxazolidin-2-one) by an ethoxy group, as shown in Fig.1. It would be interesting to compare the crystal structures of both isomers of this compound (scheme 1). Actually, the geometric parameters (bond lenghths and angles) of the two isomers are very similar to those observed in other heterocyclic structures (Aschwanden et al., 1976; Doubia et al., 2007; Mamedov et al., 2007). However, the main difference between the two isomers is the position of the oxazolidine group with respect to the quinoxalin. Moreover, the dihedral angle between the fused six-membered rings and the five cycles measuring 20.04 (9)° in the isomer 1 instead of 41.63 (8)° in the isomer 2.

For the biological activity of 3-[2-(3-methyl-1,2-dihydroquinoxalin-2-yloxy)ethyl]oxazolidin-2-one, see: Madhusudhan et al. (2004); Soad et al. (2006); Sriharsha & Shashikanth (2006); Menoret et al. (2009); Wilhelmsson et al. (2008). For the structure of the isomer of the title compound, see: Caleb et al. (2009). For related structures, see: Doubia et al. (2007); Mamedov et al. (2007); Aschwanden et al.(1976).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. The structures of the two isomers.
3-[2-(3-Methylquinoxalin-2-yloxy)ethyl]-1,3-oxazolidin-2-one top
Crystal data top
C14H15N3O3Z = 2
Mr = 273.29F(000) = 288
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9936 (3) ÅCell parameters from 15358 reflections
b = 7.6916 (3) Åθ = 2.8–27.5°
c = 13.3709 (6) ŵ = 0.10 mm1
α = 86.649 (2)°T = 296 K
β = 77.044 (2)°Prism, colourless
γ = 71.141 (2)°0.41 × 0.33 × 0.20 mm
V = 663.23 (5) Å3
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
2358 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
φ and ω scansh = 99
15358 measured reflectionsk = 99
3030 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.0716P]
where P = (Fo2 + 2Fc2)/3
3030 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H15N3O3γ = 71.141 (2)°
Mr = 273.29V = 663.23 (5) Å3
Triclinic, P1Z = 2
a = 6.9936 (3) ÅMo Kα radiation
b = 7.6916 (3) ŵ = 0.10 mm1
c = 13.3709 (6) ÅT = 296 K
α = 86.649 (2)°0.41 × 0.33 × 0.20 mm
β = 77.044 (2)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
2358 reflections with I > 2σ(I)
15358 measured reflectionsRint = 0.023
3030 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
3030 reflectionsΔρmin = 0.17 e Å3
198 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31122 (17)0.72867 (15)0.95763 (8)0.0378 (3)
C20.08813 (17)0.80823 (15)1.11146 (8)0.0382 (3)
C30.11007 (19)0.83829 (18)1.17492 (10)0.0470 (3)
C40.1442 (2)0.8837 (2)1.27638 (10)0.0531 (3)
C50.0143 (2)0.90272 (19)1.31801 (10)0.0540 (3)
C60.2068 (2)0.87655 (18)1.25750 (10)0.0503 (3)
C70.24799 (18)0.82807 (16)1.15335 (9)0.0403 (3)
C80.47691 (17)0.75240 (16)0.99773 (9)0.0412 (3)
C90.68526 (19)0.7217 (2)0.92895 (11)0.0546 (3)
H9A0.73710.59870.90150.082*
H9B0.77840.73930.96740.082*
H9C0.67430.80750.87370.082*
C100.21267 (19)0.63937 (19)0.81444 (9)0.0465 (3)
H10A0.11050.75510.80410.056*
H10B0.14290.56430.85930.056*
C110.3226 (2)0.54186 (19)0.71328 (10)0.0523 (3)
H11A0.42180.42580.72580.063*
H11B0.22210.51460.68260.063*
C120.3726 (3)0.7066 (2)0.55269 (11)0.0625 (4)
C130.6852 (3)0.7454 (3)0.54185 (14)0.0820 (5)
H13A0.69570.86340.55700.098*
H13B0.81510.67390.49860.098*
C140.6363 (3)0.6450 (3)0.63974 (11)0.0682 (4)
H14A0.73190.52090.63750.082*
H14B0.63940.70980.69910.082*
N10.12438 (14)0.75658 (13)1.01023 (7)0.0406 (2)
N20.44386 (15)0.80020 (15)1.09343 (8)0.0462 (3)
N30.43028 (18)0.64507 (16)0.64066 (8)0.0534 (3)
O10.36793 (12)0.67107 (12)0.85906 (6)0.0460 (2)
O20.2172 (2)0.70974 (18)0.52691 (9)0.0879 (4)
O30.5186 (2)0.76983 (16)0.49204 (8)0.0829 (4)
H30.220 (2)0.8300 (19)1.1449 (11)0.052 (4)*
H40.280 (2)0.908 (2)1.3175 (13)0.068 (4)*
H50.009 (2)0.934 (2)1.3883 (14)0.064 (4)*
H60.322 (3)0.889 (2)1.2864 (13)0.071 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0389 (6)0.0433 (6)0.0313 (6)0.0140 (5)0.0066 (4)0.0011 (4)
C20.0413 (6)0.0410 (6)0.0317 (6)0.0135 (5)0.0066 (4)0.0011 (4)
C30.0439 (7)0.0559 (7)0.0406 (7)0.0189 (6)0.0031 (5)0.0016 (5)
C40.0526 (7)0.0592 (8)0.0396 (7)0.0161 (6)0.0039 (6)0.0019 (6)
C50.0656 (8)0.0568 (8)0.0317 (7)0.0106 (6)0.0064 (6)0.0048 (5)
C60.0545 (8)0.0564 (8)0.0388 (7)0.0113 (6)0.0162 (6)0.0043 (5)
C70.0415 (6)0.0427 (6)0.0354 (6)0.0106 (5)0.0097 (5)0.0003 (5)
C80.0366 (6)0.0476 (6)0.0391 (6)0.0127 (5)0.0083 (5)0.0005 (5)
C90.0394 (6)0.0745 (9)0.0505 (8)0.0210 (6)0.0050 (5)0.0066 (6)
C100.0446 (6)0.0629 (8)0.0351 (6)0.0211 (6)0.0079 (5)0.0038 (5)
C110.0608 (8)0.0600 (8)0.0381 (7)0.0217 (6)0.0093 (6)0.0066 (5)
C120.0842 (11)0.0549 (8)0.0358 (7)0.0028 (8)0.0139 (7)0.0097 (6)
C130.0972 (13)0.0874 (12)0.0545 (10)0.0363 (10)0.0076 (9)0.0021 (8)
C140.0723 (10)0.0929 (11)0.0440 (8)0.0373 (9)0.0061 (7)0.0036 (7)
N10.0385 (5)0.0515 (6)0.0331 (5)0.0169 (4)0.0062 (4)0.0017 (4)
N20.0400 (5)0.0571 (6)0.0425 (6)0.0140 (5)0.0120 (4)0.0036 (5)
N30.0602 (7)0.0644 (7)0.0316 (5)0.0157 (5)0.0071 (5)0.0024 (5)
O10.0409 (4)0.0667 (6)0.0316 (4)0.0203 (4)0.0035 (3)0.0063 (4)
O20.1019 (9)0.0914 (9)0.0633 (8)0.0034 (7)0.0421 (7)0.0077 (6)
O30.1211 (10)0.0797 (8)0.0399 (6)0.0288 (7)0.0081 (6)0.0096 (5)
Geometric parameters (Å, º) top
C1—N11.2932 (14)C9—H9C0.9600
C1—O11.3457 (13)C10—O11.4398 (13)
C1—C81.4458 (15)C10—C111.5041 (18)
C2—N11.3777 (14)C10—H10A0.9700
C2—C31.4083 (16)C10—H10B0.9700
C2—C71.4099 (15)C11—N31.4523 (17)
C3—C41.3695 (18)C11—H11A0.9700
C3—H30.966 (14)C11—H11B0.9700
C4—C51.397 (2)C12—O21.2046 (19)
C4—H40.949 (16)C12—N31.3394 (19)
C5—C61.3646 (19)C12—O31.357 (2)
C5—H50.948 (17)C13—O31.424 (2)
C6—C71.4045 (17)C13—C141.510 (2)
C6—H60.999 (17)C13—H13A0.9700
C7—N21.3793 (15)C13—H13B0.9700
C8—N21.3013 (15)C14—N31.4379 (19)
C8—C91.4923 (16)C14—H14A0.9700
C9—H9A0.9600C14—H14B0.9700
C9—H9B0.9600
N1—C1—O1121.60 (10)C11—C10—H10A110.3
N1—C1—C8124.34 (10)O1—C10—H10B110.3
O1—C1—C8114.06 (9)C11—C10—H10B110.3
N1—C2—C3119.79 (10)H10A—C10—H10B108.6
N1—C2—C7120.95 (10)N3—C11—C10114.20 (11)
C3—C2—C7119.25 (11)N3—C11—H11A108.7
C4—C3—C2119.75 (12)C10—C11—H11A108.7
C4—C3—H3121.5 (9)N3—C11—H11B108.7
C2—C3—H3118.7 (8)C10—C11—H11B108.7
C3—C4—C5121.01 (12)H11A—C11—H11B107.6
C3—C4—H4118.6 (10)O2—C12—N3127.96 (16)
C5—C4—H4120.3 (10)O2—C12—O3122.31 (14)
C6—C5—C4120.14 (12)N3—C12—O3109.73 (14)
C6—C5—H5118.9 (9)O3—C13—C14106.05 (14)
C4—C5—H5120.9 (9)O3—C13—H13A110.5
C5—C6—C7120.42 (12)C14—C13—H13A110.5
C5—C6—H6120.9 (10)O3—C13—H13B110.5
C7—C6—H6118.6 (10)C14—C13—H13B110.5
N2—C7—C6119.74 (10)H13A—C13—H13B108.7
N2—C7—C2120.85 (10)N3—C14—C13101.80 (14)
C6—C7—C2119.41 (11)N3—C14—H14A111.4
N2—C8—C1119.95 (10)C13—C14—H14A111.4
N2—C8—C9120.35 (10)N3—C14—H14B111.4
C1—C8—C9119.70 (11)C13—C14—H14B111.4
C8—C9—H9A109.5H14A—C14—H14B109.3
C8—C9—H9B109.5C1—N1—C2115.96 (9)
H9A—C9—H9B109.5C8—N2—C7117.92 (10)
C8—C9—H9C109.5C12—N3—C14112.13 (13)
H9A—C9—H9C109.5C12—N3—C11122.09 (13)
H9B—C9—H9C109.5C14—N3—C11123.42 (12)
O1—C10—C11106.91 (10)C1—O1—C10117.34 (9)
O1—C10—H10A110.3C12—O3—C13109.59 (12)

Experimental details

Crystal data
Chemical formulaC14H15N3O3
Mr273.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9936 (3), 7.6916 (3), 13.3709 (6)
α, β, γ (°)86.649 (2), 77.044 (2), 71.141 (2)
V3)663.23 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.33 × 0.20
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15358, 3030, 2358
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.06
No. of reflections3030
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

 

Footnotes

Present address: Institute of Nanomaterial and Nanotechnology, Avenue de l'Armée Royale, Rabat, Morocco.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAschwanden, W., Kyburz, E. & Schonholzer, P. (1976). Helv. Chim. Acta, 59, 1245–1252.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024–o2025.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDoubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMadhusudhan, G., Om Reddy, G., Ramanathan, J. & Dubey, P. K. (2004). Indian J. Chem. Sect. B, 43, 957–963.  Google Scholar
First citationMamedov, V. A., Khafizova, E. A., Beschastnova, T. N., Zhukova, N. A., Gubaidullin, A. T., Rizvanov, I. Kh., Berdnikov, E. A. & Litvinov, I. A. (2007). Izv. Akad. Nauk SSSR Ser. Khim. (Russ.) (Russ. Chem. Bull.), 5, 1047–1048  Google Scholar
First citationMenoret, A., Mcaleer, J. P., Ngoi, S. M., Swagatam, R., Eddy, N. A., Fenteany, G., Lee, S. J., Rossi, R. J., Mukherji, B., Allen, D. L., Chakraborty, N. G. & Vella, A. T. (2009). J. Immunol. 183, 7489–7496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoad, A. M., El-Hawash, S. A., Abeer, E. & Wahab, A. (2006). Arch. Pharm. (Weinheim), 339, 437–447.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriharsha, S. N. & Shashikanth, S. J. (2006). Heterocycl. Commun. 12, 213–218.  CrossRef CAS Google Scholar
First citationWilhelmsson, L. M., Kingi, N. & Bergman, J. (2008). J. Med. Chem. 51, 7744–7750.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds