organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Ethyl­enebis(3,4-di­hydro-6-chloro-2H-1,3-benzoxazine)

aDepartamento de Química, Universidad Nacional de Colombia, Bogotá, AA 14490, Colombia, and bInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 29 March 2010; accepted 18 April 2010; online 21 April 2010)

The asymmetric unit of the title compound, C18H18Cl2N2O2, contains one half of an independent mol­ecule, the other half being generated via a centre of inversion at the mol­ecular centroid. In the crystal structure, mol­ecular chains are formed through non-classical C—H⋯ O hydrogen bonds between an axial H atom of the oxazine ring and the O atom of a neighbouring mol­ecule.

Related literature

For the synthesis, see: Rivera et al. (1989[Rivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). Anal. Quim. 85, 9-10.]). For related structures, see: Rivera et al. (1986[Rivera, A., Ospina, E., Sanchez, A. & Joseph-Nathan, P. (1986). Heterocycles, 24, 2507-2510.]); Huerta et al. (2006[Huerta, R., Toscano, R. A. & Castillo, I. (2006). Acta Cryst. E62, o2938-o2940.]); Chen & Wu (2007[Chen, X.-L. & Wu, M.-H. (2007). Acta Cryst. E63, o3684.]); Ranjith et al. (2009[Ranjith, S., Thenmozhi, S., Manikannan, R., Muthusubramanian, S. & Subbiahpandi, A. (2009). Acta Cryst. E65, o581.]). For uses of benzoxazines in polymer science, see Yaggi et al. (2009[Yaggi, Y., Kiskan, B. & Ghosh, N. N. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 5565-5576.]). For the biological activity of bis-benzoxazine compounds, see: Billmann & Dorman (1963[Billmann, J. H. & Dorman, L. C. (1963). J. Med. Chem. 6, 701-708.]); Heinisch et al. (2002[Heinisch, L., Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs, D. & Mollmann, U. (2002). J. Med. Chem. 45, 3032-3039.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18Cl2N2O2

  • Mr = 365.3

  • Monoclinic, C 2/c

  • a = 18.9920 (5) Å

  • b = 5.8884 (2) Å

  • c = 17.8813 (5) Å

  • β = 125.449 (4)°

  • V = 1629.03 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.70 mm−1

  • T = 120 K

  • 0.30 × 0.19 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnto, England.]), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.593, Tmax = 0.787

  • 12716 measured reflections

  • 1442 independent reflections

  • 1344 reflections with I > 3σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.103

  • S = 2.26

  • 1442 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.96 2.56 3.369 (2) 142
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnto, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnto, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

1,3-Benzoxazines are heterocyclic compound obtained from condensation between phenols, formaldehyde and a primary amine. Applications of these compounds are in polymeric and pharmacological fields. Recently the structure of these compounds has attracted much attention see Huerta et al. (2006); Chen & Wu (2007); Ranjith et al. (2009). During our investigations, a series of bis-benzoxazines were prepared by reaction of phenols, formaldehyde and ethylenediamine (Rivera et al., 1986). However, the crystallization of these compounds was difficult and led to crystals of bad quality. In the present work, the single crystals of the title compound were finally successfully prepared and its crystal structure has been determined herein.

The molecule contains two 1,3-benzoxazine units linked by an ethylene bridge. The asymmetric unit of the title compound C18H18Cl2N2O2, contains one-half of the formula unit; a centre of inversion is located at the mid-point of the central C1—C1i bond (see Fig. 1). Both oxazine rings are in cyclohexene-like conformations with normal bond distances and angles, and their values were found in good agreement with the corresponding values in the related structures reported by Huerta et al. (2006), Chen & Wu (2007) and Ranjith et al. (2009). In the crystal structure, molecules are linked via C2—H2B···O1 weak hydrogen bonds forming a molecular slab (see Fig 2a,b). The bond involves axial-hydrogen of oxazine ring and the oxygen atom of a neighbor molecule.

There is also possibility for very weak intermolecular interaction between the hydrogen H2A and the aromatic ring C3,C4,C6, C7, C8, C9, with the distance between H2A and the centre of the ring of 2.99 Å.

Related literature top

For the synthesis, see: Rivera et al. (1989). For related structures, see: Rivera et al. (1986); Huerta et al. (2006); Chen & Wu (2007); Ranjith et al. (2009). For uses of benzoxazines in polymer science, see Yaggi et al. (2009). For the biological activity of bis-benzoxazine compounds, see: Billmann & Dorman (1963); Heinisch et al. (2002).

Experimental top

Under vigorous stirring a mixture of ethylenediamine (0.34 ml, 5 mmol) and p-chlorophenol (1.3 g 10 mmol) was dissolved in dioxane (10 ml) and (1.5 ml, 20 mmol) was slowly added. Stirring was continued for 4 h at rt until a precipitate appeared. The solid was filtered off and washed with water (1.83 g, 92%). Recrystallization from ethanol gave a white solid.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms attached to C atoms were nevertheless kept in ideal positions during the refinement. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Structure description top

1,3-Benzoxazines are heterocyclic compound obtained from condensation between phenols, formaldehyde and a primary amine. Applications of these compounds are in polymeric and pharmacological fields. Recently the structure of these compounds has attracted much attention see Huerta et al. (2006); Chen & Wu (2007); Ranjith et al. (2009). During our investigations, a series of bis-benzoxazines were prepared by reaction of phenols, formaldehyde and ethylenediamine (Rivera et al., 1986). However, the crystallization of these compounds was difficult and led to crystals of bad quality. In the present work, the single crystals of the title compound were finally successfully prepared and its crystal structure has been determined herein.

The molecule contains two 1,3-benzoxazine units linked by an ethylene bridge. The asymmetric unit of the title compound C18H18Cl2N2O2, contains one-half of the formula unit; a centre of inversion is located at the mid-point of the central C1—C1i bond (see Fig. 1). Both oxazine rings are in cyclohexene-like conformations with normal bond distances and angles, and their values were found in good agreement with the corresponding values in the related structures reported by Huerta et al. (2006), Chen & Wu (2007) and Ranjith et al. (2009). In the crystal structure, molecules are linked via C2—H2B···O1 weak hydrogen bonds forming a molecular slab (see Fig 2a,b). The bond involves axial-hydrogen of oxazine ring and the oxygen atom of a neighbor molecule.

There is also possibility for very weak intermolecular interaction between the hydrogen H2A and the aromatic ring C3,C4,C6, C7, C8, C9, with the distance between H2A and the centre of the ring of 2.99 Å.

For the synthesis, see: Rivera et al. (1989). For related structures, see: Rivera et al. (1986); Huerta et al. (2006); Chen & Wu (2007); Ranjith et al. (2009). For uses of benzoxazines in polymer science, see Yaggi et al. (2009). For the biological activity of bis-benzoxazine compounds, see: Billmann & Dorman (1963); Heinisch et al. (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the atomic numbering scheme with atomic displacement ellipsoids drawn at the 50%.
[Figure 2] Fig. 2. Perspective views of the crystal packing showing hydrogen-bonded interactions (dashed lines).
3,3'-Ethylenebis(3,4-dihydro-6-chloro-2H-1,3-benzoxazine) top
Crystal data top
C18H18Cl2N2O2F(000) = 760
Mr = 365.3Dx = 1.489 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 10117 reflections
a = 18.9920 (5) Åθ = 3.0–66.8°
b = 5.8884 (2) ŵ = 3.70 mm1
c = 17.8813 (5) ÅT = 120 K
β = 125.449 (4)°Prism, colorless
V = 1629.03 (12) Å30.30 × 0.19 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1442 independent reflections
Radiation source: X-ray tube1344 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3784 pixels mm-1θmax = 75.1°, θmin = 5.4°
Rotation method data acquisition using ω scansh = 2222
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 76
Tmin = 0.593, Tmax = 0.787l = 1920
12716 measured reflections
Refinement top
Refinement on F236 constraints
R[F > 3σ(F)] = 0.030H-atom parameters constrained
wR(F) = 0.103Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 2.26(Δ/σ)max = 0.014
1442 reflectionsΔρmax = 0.25 e Å3
109 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C18H18Cl2N2O2V = 1629.03 (12) Å3
Mr = 365.3Z = 4
Monoclinic, C2/cCu Kα radiation
a = 18.9920 (5) ŵ = 3.70 mm1
b = 5.8884 (2) ÅT = 120 K
c = 17.8813 (5) Å0.30 × 0.19 × 0.12 mm
β = 125.449 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1442 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
1344 reflections with I > 3σ(I)
Tmin = 0.593, Tmax = 0.787Rint = 0.024
12716 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0300 restraints
wR(F) = 0.103H-atom parameters constrained
S = 2.26Δρmax = 0.25 e Å3
1442 reflectionsΔρmin = 0.25 e Å3
109 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction Ltd., Version 1.171.33.51 (release 27-10-2009 CrysAlis171 .NET) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60192 (2)0.00670 (6)0.93208 (3)0.0280 (3)
O10.67792 (6)0.65142 (16)0.72490 (7)0.0215 (5)
N10.60904 (7)0.4270 (2)0.58616 (8)0.0180 (5)
C10.53100 (8)0.5511 (3)0.54598 (10)0.0185 (7)
C20.67854 (8)0.5625 (3)0.64492 (10)0.0198 (6)
C30.65998 (9)0.4905 (2)0.77097 (11)0.0192 (7)
C40.62512 (8)0.2799 (2)0.73128 (10)0.0190 (6)
C50.61011 (8)0.2223 (2)0.63683 (10)0.0191 (6)
C60.60690 (8)0.1294 (2)0.78148 (10)0.0208 (6)
C70.62347 (9)0.1873 (3)0.86889 (10)0.0233 (7)
C80.65769 (9)0.3956 (3)0.90753 (11)0.0261 (7)
C90.67601 (10)0.5459 (3)0.85788 (11)0.0246 (7)
H1a0.540870.7070970.5390470.0222*
H1b0.5093680.5333030.5826330.0222*
H2a0.6797960.6883630.611570.0238*
H2b0.7309910.4796480.6684330.0238*
H5a0.653910.1185790.6471020.023*
H5b0.5568510.1403410.5985220.023*
H60.5825290.0168990.7555970.0249*
H80.6688570.4385840.9652840.0313*
H90.7003650.6918580.8841310.0295*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0306 (3)0.0293 (3)0.0288 (3)0.00199 (13)0.0199 (2)0.00560 (14)
O10.0192 (5)0.0205 (6)0.0179 (5)0.0041 (4)0.0068 (4)0.0012 (4)
N10.0124 (5)0.0177 (6)0.0169 (6)0.0007 (4)0.0044 (5)0.0005 (5)
C10.0141 (6)0.0178 (7)0.0161 (8)0.0023 (5)0.0045 (6)0.0013 (6)
C20.0150 (6)0.0227 (7)0.0174 (7)0.0018 (5)0.0069 (6)0.0001 (6)
C30.0137 (6)0.0193 (8)0.0183 (8)0.0015 (4)0.0057 (6)0.0018 (5)
C40.0131 (6)0.0203 (7)0.0172 (7)0.0028 (5)0.0052 (5)0.0006 (5)
C50.0162 (6)0.0173 (7)0.0176 (7)0.0010 (5)0.0062 (5)0.0011 (5)
C60.0146 (6)0.0193 (7)0.0231 (8)0.0016 (5)0.0079 (6)0.0007 (6)
C70.0194 (6)0.0251 (8)0.0248 (8)0.0042 (5)0.0125 (6)0.0053 (6)
C80.0267 (7)0.0282 (8)0.0210 (8)0.0026 (6)0.0125 (6)0.0014 (6)
C90.0233 (7)0.0217 (7)0.0228 (8)0.0005 (6)0.0100 (6)0.0023 (6)
Geometric parameters (Å, º) top
Cl1—C71.813 (2)C3—C91.437 (3)
O1—C21.529 (2)C4—C51.578 (3)
O1—C31.421 (2)C4—C61.439 (3)
N1—C11.4182 (18)C5—H5a0.96
N1—C21.3690 (16)C5—H5b0.96
N1—C51.501 (2)C6—C71.445 (3)
C1—C1i1.4853 (18)C6—H60.96
C1—H1a0.96C7—C81.372 (2)
C1—H1b0.96C8—C91.432 (3)
C2—H2a0.96C8—H80.96
C2—H2b0.96C9—H90.96
C3—C41.3907 (19)
C2—O1—C3116.65 (11)C3—C4—C6116.51 (16)
C1—N1—C2110.35 (12)C5—C4—C6125.13 (12)
C1—N1—C5111.32 (14)N1—C5—C4113.84 (12)
C2—N1—C5109.60 (10)N1—C5—H5a109.4703
N1—C1—C1i106.07 (13)N1—C5—H5b109.4713
N1—C1—H1a109.4706C4—C5—H5a109.4721
N1—C1—H1b109.4717C4—C5—H5b109.4707
C1i—C1—H1a109.47H5a—C5—H5b104.7188
C1i—C1—H1b109.4723C4—C6—C7123.28 (13)
H1a—C1—H1b112.6688C4—C6—H6118.3591
O1—C2—N1112.97 (15)C7—C6—H6118.3615
O1—C2—H2a109.4708Cl1—C7—C6122.62 (11)
O1—C2—H2b109.4711Cl1—C7—C8117.49 (15)
N1—C2—H2a109.471C6—C7—C8119.88 (18)
N1—C2—H2b109.4715C7—C8—C9117.04 (18)
H2a—C2—H2b105.7297C7—C8—H8121.4818
O1—C3—C4120.14 (17)C9—C8—H8121.4814
O1—C3—C9120.27 (12)C3—C9—C8123.70 (14)
C4—C3—C9119.58 (17)C3—C9—H9118.1485
C3—C4—C5118.35 (16)C8—C9—H9118.1475
C2—N1—C1—C1i150.21 (14)C9—C3—C4—C60.2 (3)
C5—N1—C1—C1i87.87 (15)O1—C3—C9—C8178.38 (17)
C3—O1—C2—N146.41 (18)C4—C3—C9—C80.3 (3)
C2—O1—C3—C414.6 (2)C3—C4—C5—N118.4 (2)
C2—O1—C3—C9166.66 (16)C6—C4—C5—N1162.77 (15)
C1—N1—C2—O161.58 (16)C3—C4—C6—C70.3 (3)
C5—N1—C2—O161.37 (17)C5—C4—C6—C7178.57 (16)
C1—N1—C5—C474.43 (16)C4—C6—C7—Cl1178.83 (13)
C2—N1—C5—C447.92 (19)C4—C6—C7—C80.5 (3)
N1—C1—C1i—N1i180.00 (13)Cl1—C7—C8—C9178.84 (14)
O1—C3—C4—C52.6 (2)C6—C7—C8—C90.5 (3)
O1—C3—C4—C6178.46 (15)C7—C8—C9—C30.5 (3)
C9—C3—C4—C5178.74 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1ii0.962.563.369 (2)142
Symmetry code: (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H18Cl2N2O2
Mr365.3
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)18.9920 (5), 5.8884 (2), 17.8813 (5)
β (°) 125.449 (4)
V3)1629.03 (12)
Z4
Radiation typeCu Kα
µ (mm1)3.70
Crystal size (mm)0.30 × 0.19 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.593, 0.787
No. of measured, independent and
observed [I > 3σ(I)] reflections
12716, 1442, 1344
Rint0.024
(sin θ/λ)max1)0.627
Refinement
R[F > 3σ(F)], wR(F), S 0.030, 0.103, 2.26
No. of reflections1442
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.962.563.369 (2)142
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones Sede Bogotá (DIB) of the Universidad Nacional de Colombia, the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences (ASCR) for financial support of this work.

References

First citationBillmann, J. H. & Dorman, L. C. (1963). J. Med. Chem. 6, 701–708.  CrossRef PubMed Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChen, X.-L. & Wu, M.-H. (2007). Acta Cryst. E63, o3684.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeinisch, L., Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs, D. & Mollmann, U. (2002). J. Med. Chem. 45, 3032–3039.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuerta, R., Toscano, R. A. & Castillo, I. (2006). Acta Cryst. E62, o2938–o2940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnto, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRanjith, S., Thenmozhi, S., Manikannan, R., Muthusubramanian, S. & Subbiahpandi, A. (2009). Acta Cryst. E65, o581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). Anal. Quim. 85, 9–10.  CAS Google Scholar
First citationRivera, A., Ospina, E., Sanchez, A. & Joseph-Nathan, P. (1986). Heterocycles, 24, 2507–2510.  CrossRef CAS Google Scholar
First citationYaggi, Y., Kiskan, B. & Ghosh, N. N. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 5565–5576.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds