organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-(2,3-Di­hydro-1,3-benzo­thia­zol-2-yl­­idene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aLaboratoire de Chimie Organique et Études Physicochimiques, ENS Rabat, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Université Mohammed V Rabat, Morocco, cInstitute of Nanomaterials and Nanotechnology, Avenue Armées Royals, Rabat, Morocco, and dInstitute of Chemistry, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

(Received 26 March 2010; accepted 9 April 2010; online 17 April 2010)

In the title compound, C17H13N3OS, the dihedral angle between the ring systems is 2.22 (5)°. The N—H grouping participates in both intra- and intermolecular N—H⋯O hydrogen bonds, the latter leading to dimers related by a twofold rotation axis.

Related literature

For related structures, see: Teo et al. (1993[Teo, S.-B., Teoh, S.-G., Okechukwu, R. C. & Fun, H.-K. (1993). J. Organomet. Chem. 454, 67-71.]); Chen (1994[Chen, W. (1994). J. Organomet. Chem. 471, 69-71.]); Sawusch & Schilde (1999[Sawusch, S. & Schilde, U. (1999). Z. Naturforsch. Teil B, 54, 881-886.]); Chu et al. (2003[Chu, Q., Wang, Z., Huang, Q., Yan, C. & Zhu, S. (2003). New J. Chem. 27, 1522-1527.]); Liu et al. (2004[Liu, G. F., Liu, L., Jia, D.-Z. & Yu, K. B. (2004). J. Chem. Crystallogr. 34, 835-841.]). For related literature, see: Harnden et al. (1978[Harnden, M. R., Bailey, S., Boyd, M. R., Taylor, D. R. & Wright, N. D. (1978). J. Med. Chem. 21, 82-87.]); Hatheway et al. (1978[Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563-574.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-292.]); Tewari & Mishra (2001[Tewari, A. K. & Mishra, A. (2001). Bioorg. Med. Chem. 9, 715-718.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3OS

  • Mr = 307.36

  • Monoclinic, C 2/c

  • a = 27.0144 (8) Å

  • b = 7.4021 (2) Å

  • c = 14.0523 (4) Å

  • β = 97.466 (1)°

  • V = 2786.12 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.40 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII with a CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.956

  • 57380 measured reflections

  • 3359 independent reflections

  • 2928 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.05

  • 3359 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O15 0.88 2.24 2.8483 (14) 126
N3—H3⋯O15i 0.88 2.22 2.9161 (13) 136
Symmetry code: (i) [-x+2, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications and their widespread potential and proven biological and pharmacological activities such as anti-inflammatory (Tewari et al., 2001), antimicrobial, antiviral (Harnden et al., 1978), anti-tumor (Hatheway et al., 1978), anti-fungal and pesticidal substances (Londershausen et al., 1996).

The new pyrazole derivative (E)-4-(benzo[d]thiazol-2-(3H)-ylidene)-3-methyl-1- phenyl-1H-pyrazol-5(4H)-one, 3, was synthesised according to reaction scheme 1. The solid state structure of 3 (Fig. 1) shows the typical structural features of its three subunits: a phenyl rest, a pyrazole derivative and a benzothiazole-like fragment.

In the pyrazol moiety the shortening of the bond between N12 and C13 [1.307 (2) Å] corresponds to a double bond in accordance with the formulation of the double bond in scheme 1.

All of the three subunits are for themselves planar, deviations from the least-square planes are small. Within the benzo[d]thiazole the greatest deviations result from the fact that the phenyl ring is planar whereas the remaining atoms of the thiazole ring are out of this plane with a maximum at C2 [-0.055 (2) Å]. Moreover, the complete molecule adopts are slightly curved conformation (Fig. 2). In the case of the 1,3-benzothiazole-pyrazole bond planarity should be result from the double bond [d(C—C) = 1.388 (2) Å] between the two subunits. Nevertheless, the interplanar dihedral angle between both ring systems is 2.22 (5)°. Between the pyrazole and the phenyl fragment the carbon-carbon single bond is shortened [d(C—C) = 1.416 (2) Å] but even longer than a double bond. In this case, the interplanar dihedral angle between both fragments is 7.16 (6)°. Similar values between these two subunits were obsereved earlier (Liu et al. 2004).

In the solid state, 3 forms dimers (Fig. 3) by bifurcated hydrogen bonds between the NH-group [N3] of the 1,3-benzothiazole-rest and O15 of a neighbouring molecule, both related by a twofold rotation axis. The second part of the bifurcated hydrogen bond system combines the NH-group with O15 within the same molecule.

Related literature top

For related structures, see: Teo et al. (1993); Chen (1994); Sawusch & Schilde (1999); Chu et al. (2003); Liu et al. (2004).

For related literature, see: Harnden et al. (1978); Hatheway et al. (1978); Londershausen (1996); Tewari & Mishra (2001).

Experimental top

1.98 g (0.1 mol) (E)-3-methyl-4-(4-methyl-1-phenylpyrano[2,3-c]pyrazol-6(1H)-ylidene)-1-phenyl-1H-pyrazol-5(4H)-one, 2, were refluxed for 72 h with 2.136 ml (0.02 mol) 2-aminobenzenethiol, 1, in 50 ml n-butanol. On cooling the product forms transparent colourless crystals, which were filtered off in a yield of 50%. A suitable single crystal was selected under a polarization microsope and mounted on a 50 µm MicroMesh MiTeGen MicromountTM using FROMBLIN Y perfluoropolyether (LVAC 16/6, Aldrich).

Refinement top

Hydrogen atoms were clearly identified in difference Fourier syntheses, idealized and refined at calculated positions riding on the carbon atoms with C—H = 0.98 Å for methyl H atoms, 0.95 Å for aromatic H atoms and N—H = 0.88 Å. Methyl groups were allowed to rotate around the C—C–bond. Three common isotropic displacement parameters for the H–atoms of the three different subunits were refined.

Structure description top

The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications and their widespread potential and proven biological and pharmacological activities such as anti-inflammatory (Tewari et al., 2001), antimicrobial, antiviral (Harnden et al., 1978), anti-tumor (Hatheway et al., 1978), anti-fungal and pesticidal substances (Londershausen et al., 1996).

The new pyrazole derivative (E)-4-(benzo[d]thiazol-2-(3H)-ylidene)-3-methyl-1- phenyl-1H-pyrazol-5(4H)-one, 3, was synthesised according to reaction scheme 1. The solid state structure of 3 (Fig. 1) shows the typical structural features of its three subunits: a phenyl rest, a pyrazole derivative and a benzothiazole-like fragment.

In the pyrazol moiety the shortening of the bond between N12 and C13 [1.307 (2) Å] corresponds to a double bond in accordance with the formulation of the double bond in scheme 1.

All of the three subunits are for themselves planar, deviations from the least-square planes are small. Within the benzo[d]thiazole the greatest deviations result from the fact that the phenyl ring is planar whereas the remaining atoms of the thiazole ring are out of this plane with a maximum at C2 [-0.055 (2) Å]. Moreover, the complete molecule adopts are slightly curved conformation (Fig. 2). In the case of the 1,3-benzothiazole-pyrazole bond planarity should be result from the double bond [d(C—C) = 1.388 (2) Å] between the two subunits. Nevertheless, the interplanar dihedral angle between both ring systems is 2.22 (5)°. Between the pyrazole and the phenyl fragment the carbon-carbon single bond is shortened [d(C—C) = 1.416 (2) Å] but even longer than a double bond. In this case, the interplanar dihedral angle between both fragments is 7.16 (6)°. Similar values between these two subunits were obsereved earlier (Liu et al. 2004).

In the solid state, 3 forms dimers (Fig. 3) by bifurcated hydrogen bonds between the NH-group [N3] of the 1,3-benzothiazole-rest and O15 of a neighbouring molecule, both related by a twofold rotation axis. The second part of the bifurcated hydrogen bond system combines the NH-group with O15 within the same molecule.

For related structures, see: Teo et al. (1993); Chen (1994); Sawusch & Schilde (1999); Chu et al. (2003); Liu et al. (2004).

For related literature, see: Harnden et al. (1978); Hatheway et al. (1978); Londershausen (1996); Tewari & Mishra (2001).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ball-and-stick model of 3 with the atomic numbering scheme used; with exception of the hydrogen atoms, which are shown as spheres with common isotropic radius, all other atoms are represented as thermal displacement ellipsoids showing the 50% probability level of the corresponding atom.
[Figure 2] Fig. 2. Side view of the ball-and-stick model of 3 showing slightly curved conformation of the different ring systems.
[Figure 3] Fig. 3. Hydrogen bonded dimers of 3 with the intra- and intermolecular bifurcated hydrogen bonds indicated as broken lines; symmetry code 1) -x+2, y, -z+3/2.
[Figure 4] Fig. 4. The formation of the title compound.
(E)-4-(2,3-Dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C17H13N3OSF(000) = 1280
Mr = 307.36Dx = 1.466 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9789 reflections
a = 27.0144 (8) Åθ = 2.9–30.6°
b = 7.4021 (2) ŵ = 0.24 mm1
c = 14.0523 (4) ÅT = 100 K
β = 97.466 (1)°Prism, red
V = 2786.12 (14) Å30.40 × 0.28 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII with a CCD detector
diffractometer
3359 independent reflections
Radiation source: fine-focus sealed tube2928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 28.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3535
Tmin = 0.875, Tmax = 0.956k = 99
57380 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.082H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0331P)2 + 3.8168P]
where P = (Fo2 + 2Fc2)/3
3359 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H13N3OSV = 2786.12 (14) Å3
Mr = 307.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.0144 (8) ŵ = 0.24 mm1
b = 7.4021 (2) ÅT = 100 K
c = 14.0523 (4) Å0.40 × 0.28 × 0.20 mm
β = 97.466 (1)°
Data collection top
Bruker APEXII with a CCD detector
diffractometer
3359 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2928 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.956Rint = 0.041
57380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
3359 reflectionsΔρmin = 0.26 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.059848 (12)0.17433 (4)1.08323 (2)0.01678 (9)
C21.02064 (5)0.21310 (17)0.97688 (9)0.0151 (2)
N31.04276 (4)0.16259 (14)0.90040 (7)0.0160 (2)
H31.02810.17540.84110.0247 (19)*
C41.12040 (5)0.02162 (18)0.85676 (10)0.0198 (3)
H41.10980.02440.78960.0247 (19)*
C51.16636 (5)0.04948 (19)0.89339 (11)0.0235 (3)
H51.18760.09650.85060.0247 (19)*
C61.18205 (5)0.05341 (19)0.99209 (11)0.0250 (3)
H61.21380.10251.01520.0247 (19)*
C71.15201 (5)0.01318 (19)1.05696 (10)0.0222 (3)
H71.16260.01041.12410.0247 (19)*
C81.10583 (5)0.08405 (17)1.02029 (9)0.0174 (2)
C91.09021 (5)0.08893 (17)0.92167 (9)0.0167 (2)
N110.89806 (4)0.38442 (15)0.90615 (7)0.0151 (2)
N120.90079 (4)0.40940 (15)1.00569 (7)0.0167 (2)
C130.94462 (5)0.34924 (16)1.04238 (9)0.0157 (2)
C140.97279 (5)0.28461 (17)0.96994 (8)0.0150 (2)
C150.94124 (5)0.30754 (16)0.87995 (9)0.0147 (2)
O150.94948 (3)0.26778 (13)0.79710 (6)0.01790 (19)
C160.95996 (5)0.35330 (18)1.14808 (9)0.0194 (3)
H16A0.93220.39821.18000.030 (3)*
H16B0.98880.43331.16280.030 (3)*
H16C0.96890.23101.17100.030 (3)*
C210.85536 (5)0.45211 (17)0.84799 (9)0.0154 (2)
C220.81913 (5)0.54324 (19)0.89193 (9)0.0201 (3)
H220.82270.55450.95980.027 (2)*
C230.77785 (5)0.61730 (19)0.83640 (10)0.0219 (3)
H230.75340.67990.86660.027 (2)*
C240.77185 (5)0.60084 (19)0.73731 (10)0.0224 (3)
H240.74360.65220.69950.027 (2)*
C250.80761 (5)0.50843 (19)0.69414 (10)0.0225 (3)
H250.80350.49600.62630.027 (2)*
C260.84937 (5)0.43350 (18)0.74838 (9)0.0186 (3)
H260.87360.37030.71790.027 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01820 (16)0.01755 (16)0.01406 (15)0.00014 (12)0.00009 (11)0.00048 (11)
C20.0180 (6)0.0128 (5)0.0142 (5)0.0027 (4)0.0010 (4)0.0002 (4)
N30.0175 (5)0.0166 (5)0.0138 (5)0.0006 (4)0.0019 (4)0.0002 (4)
C40.0221 (6)0.0161 (6)0.0222 (6)0.0004 (5)0.0062 (5)0.0012 (5)
C50.0213 (7)0.0184 (6)0.0322 (7)0.0009 (5)0.0090 (5)0.0006 (5)
C60.0175 (6)0.0221 (7)0.0348 (8)0.0030 (5)0.0009 (5)0.0030 (6)
C70.0211 (6)0.0196 (6)0.0248 (7)0.0003 (5)0.0013 (5)0.0025 (5)
C80.0175 (6)0.0142 (6)0.0206 (6)0.0015 (5)0.0026 (5)0.0007 (5)
C90.0168 (6)0.0133 (6)0.0200 (6)0.0014 (5)0.0024 (5)0.0019 (5)
N110.0169 (5)0.0162 (5)0.0123 (5)0.0007 (4)0.0025 (4)0.0001 (4)
N120.0204 (5)0.0177 (5)0.0122 (5)0.0000 (4)0.0026 (4)0.0010 (4)
C130.0192 (6)0.0132 (6)0.0150 (6)0.0018 (5)0.0031 (5)0.0006 (4)
C140.0177 (6)0.0138 (6)0.0135 (5)0.0016 (5)0.0016 (4)0.0003 (4)
C150.0157 (6)0.0129 (5)0.0157 (6)0.0021 (4)0.0024 (4)0.0004 (4)
O150.0188 (4)0.0220 (5)0.0132 (4)0.0011 (4)0.0034 (3)0.0014 (3)
C160.0227 (6)0.0208 (6)0.0146 (6)0.0001 (5)0.0017 (5)0.0014 (5)
C210.0153 (6)0.0131 (5)0.0176 (6)0.0027 (5)0.0015 (4)0.0014 (4)
C220.0197 (6)0.0226 (7)0.0182 (6)0.0011 (5)0.0037 (5)0.0001 (5)
C230.0175 (6)0.0212 (6)0.0275 (7)0.0011 (5)0.0050 (5)0.0003 (5)
C240.0177 (6)0.0209 (7)0.0271 (7)0.0007 (5)0.0021 (5)0.0038 (5)
C250.0238 (7)0.0245 (7)0.0183 (6)0.0010 (5)0.0008 (5)0.0009 (5)
C260.0195 (6)0.0186 (6)0.0178 (6)0.0004 (5)0.0025 (5)0.0003 (5)
Geometric parameters (Å, º) top
S1—C21.7397 (13)N12—C131.3067 (16)
S1—C81.7485 (13)C13—C141.4303 (17)
C2—N31.3488 (16)C13—C161.4896 (17)
C2—C141.3883 (18)C14—C151.4402 (16)
N3—C91.3892 (16)C15—O151.2486 (15)
N3—H30.8800C16—H16A0.9800
C4—C51.3845 (19)C16—H16B0.9800
C4—C91.3924 (18)C16—H16C0.9800
C4—H40.9500C21—C261.3949 (17)
C5—C61.397 (2)C21—C221.3969 (18)
C5—H50.9500C22—C231.3882 (19)
C6—C71.387 (2)C22—H220.9500
C6—H60.9500C23—C241.3861 (19)
C7—C81.3892 (18)C23—H230.9500
C7—H70.9500C24—C251.386 (2)
C8—C91.3956 (17)C24—H240.9500
N11—C151.3896 (16)C25—C261.3921 (18)
N11—N121.4034 (14)C25—H250.9500
N11—C211.4158 (16)C26—H260.9500
C2—S1—C891.25 (6)C14—C13—C16127.71 (12)
N3—C2—C14123.68 (11)C2—C14—C13130.85 (12)
N3—C2—S1110.81 (9)C2—C14—C15123.10 (11)
C14—C2—S1125.50 (10)C13—C14—C15106.05 (11)
C2—N3—C9115.43 (10)O15—C15—N11126.94 (11)
C2—N3—H3122.3O15—C15—C14129.34 (12)
C9—N3—H3122.3N11—C15—C14103.72 (10)
C5—C4—C9117.76 (12)C13—C16—H16A109.5
C5—C4—H4121.1C13—C16—H16B109.5
C9—C4—H4121.1H16A—C16—H16B109.5
C4—C5—C6121.25 (13)C13—C16—H16C109.5
C4—C5—H5119.4H16A—C16—H16C109.5
C6—C5—H5119.4H16B—C16—H16C109.5
C7—C6—C5121.13 (13)C26—C21—C22119.65 (12)
C7—C6—H6119.4C26—C21—N11121.59 (11)
C5—C6—H6119.4C22—C21—N11118.74 (11)
C6—C7—C8117.66 (13)C23—C22—C21120.00 (12)
C6—C7—H7121.2C23—C22—H22120.0
C8—C7—H7121.2C21—C22—H22120.0
C7—C8—C9121.27 (12)C24—C23—C22120.70 (13)
C7—C8—S1128.27 (11)C24—C23—H23119.7
C9—C8—S1110.45 (10)C22—C23—H23119.7
N3—C9—C4127.02 (12)C23—C24—C25119.07 (12)
N3—C9—C8112.04 (11)C23—C24—H24120.5
C4—C9—C8120.93 (12)C25—C24—H24120.5
C15—N11—N12112.38 (10)C24—C25—C26121.21 (12)
C15—N11—C21129.86 (10)C24—C25—H25119.4
N12—N11—C21117.51 (10)C26—C25—H25119.4
C13—N12—N11106.02 (10)C25—C26—C21119.36 (12)
N12—C13—C14111.83 (11)C25—C26—H26120.3
N12—C13—C16120.47 (11)C21—C26—H26120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O150.882.242.8483 (14)126
N3—H3···O15i0.882.222.9161 (13)136
Symmetry code: (i) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H13N3OS
Mr307.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)27.0144 (8), 7.4021 (2), 14.0523 (4)
β (°) 97.466 (1)
V3)2786.12 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII with a CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.875, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
57380, 3359, 2928
Rint0.041
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.05
No. of reflections3359
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2007), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O150.882.242.8483 (14)125.9
N3—H3···O15i0.882.222.9161 (13)136.4
Symmetry code: (i) x+2, y, z+3/2.
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower Saxony for their financial support in the acquisition of the diffractometer.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. (1994). J. Organomet. Chem. 471, 69–71.  CAS Google Scholar
First citationChu, Q., Wang, Z., Huang, Q., Yan, C. & Zhu, S. (2003). New J. Chem. 27, 1522–1527.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarnden, M. R., Bailey, S., Boyd, M. R., Taylor, D. R. & Wright, N. D. (1978). J. Med. Chem. 21, 82–87.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563–574.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, G. F., Liu, L., Jia, D.-Z. & Yu, K. B. (2004). J. Chem. Crystallogr. 34, 835–841.  Web of Science CSD CrossRef CAS Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–292.  CrossRef CAS Google Scholar
First citationSawusch, S. & Schilde, U. (1999). Z. Naturforsch. Teil B, 54, 881–886.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeo, S.-B., Teoh, S.-G., Okechukwu, R. C. & Fun, H.-K. (1993). J. Organomet. Chem. 454, 67–71.  CAS Google Scholar
First citationTewari, A. K. & Mishra, A. (2001). Bioorg. Med. Chem. 9, 715–718.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds