metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[2,3,5,6-tetra­fluoro-4-(tri­fluoro­meth­yl)phenyl-κC1]bis­­(tri­methyl­phosphine-κP)cobalt(III)

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: hjsun@sdu.edu.cn

(Received 22 March 2010; accepted 16 April 2010; online 24 April 2010)

In the title compound, [Co(C7F7)Cl2(C3H9P)2], the CoIII atom displays a trigonal–bipyramidal coordination geometry, with the two Cl ligands and the C atom of the perfluoro­tolyl ligand in the equatorial plane and the two phosphine ligands occupying axial positions. The mol­ecule has an approximate C2v symmetry. The trifluoro­methyl group is disordered over two positions, with nearly equal occupancies.

Related literature

For general background on the activation of C—F bonds and the formation of C—C bonds, see: Schaub et al. (2006[Schaub, S., Backes, M. & Radius, U. (2006). J. Am. Chem. Soc. 128, 15964-15965.]); Böhm et al. (2001[Böhm, V., Gstöttmayr, C., Weskamp, T. & Herrmann, W. (2001). Angew. Chem. Int. Ed. 40, 3387-3389.]); Zheng et al. (2009[Zheng, T., Sun, H., Chen, Y., Li, X., Dürr, S., Radius, U. & Harms, K. (2009). Organometallics, 28, 5771-5776.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7F7)Cl2(C3H9P)2]

  • Mr = 499.04

  • Orthorhombic, P b c a

  • a = 12.3321 (19) Å

  • b = 13.3657 (19) Å

  • c = 25.426 (4) Å

  • V = 4190.8 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.740, Tmax = 0.802

  • 18353 measured reflections

  • 3373 independent reflections

  • 2345 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.186

  • S = 1.07

  • 3373 reflections

  • 223 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—Co1 1.987 (6)
Cl1—Co1 2.2290 (18)
Cl2—Co1 2.2613 (16)
Co1—P1 2.262 (2)
Co1—P2 2.264 (2)
C1—Co1—Cl1 123.2 (2)
C1—Co1—Cl2 125.5 (2)
Cl1—Co1—Cl2 111.29 (7)
C1—Co1—P1 89.36 (19)
Cl1—Co1—P1 90.78 (8)
Cl2—Co1—P1 90.03 (7)
C1—Co1—P2 89.93 (19)
Cl1—Co1—P2 89.13 (8)
Cl2—Co1—P2 90.86 (7)
P1—Co1—P2 179.08 (8)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The activation of C—F bonds by transition metal compounds has blossomed in the past few years. There has also been considerable interest in the chemistry of carbon-fluorine bond cleavage followed by carbon-carbon bond formation because they play a key role in the organic synthesis (Schaub et al., 2006; Böhm et al., 2001). Recently we have reported the stoichiometric reaction involving one-electron oxidative addition of bromobenzene and (1-perflurotoluene-κC)tris(trimethylphosphine-κP)cobalt gaining bromo(1-perflurotoluene-κC)tris(trimethylphosphine-κP)cobalt and C—C coupling product (Zheng et al., 2009). We tried to synthesise the compound 1, through the reaction of bromopentafluorobenzene with the(1-perflurotoluene-κC)tris(trimethylphosphine-κP)cobalt. We added the solution of hydrochloric acid in order to abolish the organometallic compounds and gain the organic compound 1. Surprisingly we isolated complex 2 ( Scheme 2) as red crystals and its molecular structure is shown in Fig.1. The cobalt atom displays a trigonal bipyramidal coordination, with two Cl atoms and C atom in the equatorial plane and two P atoms occupying axial positions. The Cl1—Co1 and Cl2—Co1) distances are 2.2290 (18) Å and 2.2613 (16) Å, respectively. The angle between the phosphine ligands and the Co atom, P1–Co1–P2 is 179.08 (8)°.

Related literature top

For general background on the activation of C—F bonds and the formation of C—C bonds, see: Schaub et al. (2006); Böhm et al. (2001); Zheng et al. (2009).

Experimental top

The reaction leading to the title compound is shown in Scheme 2. To a solution of 1 (0.50 g,1.00 mmol) in 30 mL of pentane was added bromopentafluorobenzene (0.74 g, 3.00 mmol) with stirring at 213 K. The mixture was allowed to warm-up to 293 K and was stirred for 18 h. The color changed from green to yellow-brown. The reaction mixture was added to a solution of hydrochloric acid with a color change to red-brown. Pentane was used to estract the organic product. Crystallization from pentane at 273 K afforded the title compound as red crystals in 37% yield.

Refinement top

Hydrogen atoms were included in the refinement at calculated positions (C–H = 0.97 Å) and treated as riding, with Uiso(H) =1.5 Ueq(C). In the refinement process, the sum of the occupancy factors of the disordered CF3 groups was constrained to 1.0 and restrains were imposed on its geometry [C-C 1.54 (2) Å; C-F 1.36 (2) Å]. The occupancy factor of the major orientation of the CF3 group refined at 0.513 (13).

Structure description top

The activation of C—F bonds by transition metal compounds has blossomed in the past few years. There has also been considerable interest in the chemistry of carbon-fluorine bond cleavage followed by carbon-carbon bond formation because they play a key role in the organic synthesis (Schaub et al., 2006; Böhm et al., 2001). Recently we have reported the stoichiometric reaction involving one-electron oxidative addition of bromobenzene and (1-perflurotoluene-κC)tris(trimethylphosphine-κP)cobalt gaining bromo(1-perflurotoluene-κC)tris(trimethylphosphine-κP)cobalt and C—C coupling product (Zheng et al., 2009). We tried to synthesise the compound 1, through the reaction of bromopentafluorobenzene with the(1-perflurotoluene-κC)tris(trimethylphosphine-κP)cobalt. We added the solution of hydrochloric acid in order to abolish the organometallic compounds and gain the organic compound 1. Surprisingly we isolated complex 2 ( Scheme 2) as red crystals and its molecular structure is shown in Fig.1. The cobalt atom displays a trigonal bipyramidal coordination, with two Cl atoms and C atom in the equatorial plane and two P atoms occupying axial positions. The Cl1—Co1 and Cl2—Co1) distances are 2.2290 (18) Å and 2.2613 (16) Å, respectively. The angle between the phosphine ligands and the Co atom, P1–Co1–P2 is 179.08 (8)°.

For general background on the activation of C—F bonds and the formation of C—C bonds, see: Schaub et al. (2006); Böhm et al. (2001); Zheng et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and aAtom numbering scheme for the title compound with the displacement ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. Preparation of the title compound.
Dichlorido[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl- κC1]bis(trimethylphosphine-κP)cobalt(III) top
Crystal data top
[Co(C7F7)Cl2(C3H9P)2]Dx = 1.582 Mg m3
Mr = 499.04Melting point: 380 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2967 reflections
a = 12.3321 (19) Åθ = 2.3–21.0°
b = 13.3657 (19) ŵ = 1.28 mm1
c = 25.426 (4) ÅT = 293 K
V = 4190.8 (11) Å3Block, red
Z = 80.25 × 0.20 × 0.18 mm
F(000) = 2000
Data collection top
Bruker SMART CCD area-detector
diffractometer
3373 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 24.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1410
Tmin = 0.740, Tmax = 0.802k = 1512
18353 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0935P)2 + 7.5678P]
where P = (Fo2 + 2Fc2)/3
3373 reflections(Δ/σ)max = 0.013
223 parametersΔρmax = 0.78 e Å3
8 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Co(C7F7)Cl2(C3H9P)2]V = 4190.8 (11) Å3
Mr = 499.04Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.3321 (19) ŵ = 1.28 mm1
b = 13.3657 (19) ÅT = 293 K
c = 25.426 (4) Å0.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3373 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2345 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.802Rint = 0.052
18353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0618 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.07Δρmax = 0.78 e Å3
3373 reflectionsΔρmin = 0.69 e Å3
223 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9572 (5)0.1013 (5)0.1322 (3)0.0593 (16)
C20.9141 (7)0.1728 (6)0.0990 (3)0.080 (2)
C30.8099 (8)0.1731 (9)0.0813 (3)0.102 (3)
C40.7378 (6)0.0992 (11)0.0944 (4)0.109 (4)
C50.7789 (7)0.0239 (8)0.1266 (3)0.094 (3)
C60.8834 (6)0.0266 (6)0.1449 (3)0.073 (2)
C81.3056 (6)0.0189 (6)0.0919 (3)0.087 (2)
H8A1.32030.05380.12410.130*
H8B1.34770.04140.09070.130*
H8C1.32440.06070.06260.130*
C91.1447 (8)0.0770 (7)0.0268 (3)0.101 (3)
H9A1.17940.14130.02860.151*
H9B1.06870.08580.02010.151*
H9C1.17660.03840.00100.151*
C101.0943 (7)0.1069 (5)0.0800 (3)0.087 (2)
H10A1.10150.14610.11150.130*
H10B1.12640.14220.05100.130*
H10C1.01890.09540.07290.130*
C111.1647 (6)0.2311 (6)0.2713 (3)0.092 (3)
H11A1.20310.17230.28240.137*
H11B1.13690.26560.30160.137*
H11C1.21310.27440.25240.137*
C120.9874 (8)0.3117 (6)0.2110 (4)0.105 (3)
H12A1.03440.34950.18840.157*
H12B0.97270.34950.24230.157*
H12C0.92060.29790.19310.157*
C130.9579 (7)0.1302 (8)0.2711 (3)0.101 (3)
H13A0.98850.06720.28160.151*
H13B0.89130.11870.25250.151*
H13C0.94380.17010.30170.151*
Cl11.22875 (15)0.22034 (13)0.13739 (8)0.0772 (6)
Cl21.18147 (13)0.01081 (11)0.21464 (6)0.0566 (4)
Co11.10845 (6)0.10295 (6)0.15914 (3)0.0498 (3)
F10.9169 (4)0.0490 (4)0.17618 (19)0.0965 (15)
F20.7167 (4)0.0546 (6)0.1418 (2)0.146 (3)
F30.7792 (5)0.2497 (5)0.0496 (2)0.156 (3)
F40.9791 (5)0.2502 (4)0.0832 (2)0.1083 (16)
P11.05246 (15)0.19513 (14)0.22862 (7)0.0664 (5)
P21.16269 (14)0.01209 (14)0.08875 (7)0.0622 (5)
C70.6149 (13)0.0863 (14)0.0797 (8)0.106 (9)*0.487 (13)
F60.5612 (14)0.0191 (12)0.1062 (6)0.154 (7)*0.487 (13)
F50.5737 (12)0.1839 (12)0.0899 (6)0.138 (6)*0.487 (13)
F70.6077 (13)0.0920 (13)0.0284 (6)0.150 (6)*0.487 (13)
C7'0.6232 (14)0.1080 (15)0.0695 (8)0.141 (12)*0.513 (13)
F6'0.6148 (12)0.1727 (13)0.0306 (6)0.158 (6)*0.513 (13)
F7'0.6005 (11)0.0140 (10)0.0511 (5)0.133 (5)*0.513 (13)
F5'0.5527 (11)0.1180 (11)0.1069 (5)0.131 (5)*0.513 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (4)0.069 (4)0.062 (4)0.006 (3)0.001 (3)0.001 (3)
C20.072 (5)0.092 (6)0.077 (5)0.023 (5)0.004 (4)0.012 (4)
C30.078 (6)0.152 (9)0.074 (5)0.056 (7)0.024 (5)0.011 (6)
C40.042 (4)0.209 (12)0.076 (6)0.027 (6)0.010 (4)0.035 (7)
C50.052 (5)0.157 (9)0.072 (5)0.024 (6)0.013 (4)0.030 (6)
C60.053 (4)0.095 (6)0.072 (5)0.008 (4)0.003 (4)0.004 (4)
C80.055 (4)0.104 (6)0.101 (6)0.014 (4)0.009 (4)0.010 (5)
C90.121 (7)0.113 (7)0.068 (5)0.018 (6)0.002 (5)0.006 (5)
C100.083 (6)0.072 (5)0.105 (6)0.012 (4)0.018 (5)0.019 (4)
C110.075 (5)0.096 (6)0.103 (6)0.012 (5)0.017 (5)0.031 (5)
C120.111 (7)0.081 (6)0.122 (7)0.042 (5)0.003 (6)0.018 (5)
C130.078 (6)0.148 (8)0.078 (5)0.005 (6)0.021 (4)0.005 (5)
Cl10.0681 (11)0.0602 (10)0.1034 (14)0.0203 (9)0.0083 (10)0.0143 (9)
Cl20.0546 (9)0.0522 (9)0.0629 (9)0.0059 (7)0.0052 (7)0.0159 (7)
Co10.0414 (5)0.0477 (5)0.0603 (5)0.0008 (3)0.0002 (4)0.0075 (4)
F10.088 (3)0.098 (3)0.103 (3)0.031 (3)0.006 (3)0.027 (3)
F20.076 (3)0.227 (7)0.136 (5)0.073 (5)0.010 (3)0.025 (5)
F30.138 (5)0.199 (6)0.130 (5)0.083 (5)0.048 (4)0.023 (4)
F40.112 (4)0.089 (3)0.124 (4)0.017 (3)0.012 (3)0.042 (3)
P10.0549 (11)0.0721 (12)0.0723 (11)0.0116 (9)0.0003 (9)0.0081 (9)
P20.0544 (10)0.0683 (11)0.0638 (11)0.0091 (9)0.0010 (8)0.0011 (8)
Geometric parameters (Å, º) top
C1—C21.382 (10)C10—H10C0.9600
C1—C61.389 (10)C11—P11.823 (8)
C1—Co11.987 (6)C11—H11A0.9600
C2—C31.362 (12)C11—H11B0.9600
C2—F41.369 (9)C11—H11C0.9600
C3—F31.358 (11)C12—P11.808 (8)
C3—C41.370 (15)C12—H12A0.9600
C4—C51.393 (14)C12—H12B0.9600
C4—C7'1.554 (17)C12—H12C0.9600
C4—C71.570 (16)C13—P11.811 (8)
C5—F21.357 (11)C13—H13A0.9600
C5—C61.370 (11)C13—H13B0.9600
C6—F11.350 (9)C13—H13C0.9600
C8—P21.812 (7)Cl1—Co12.2290 (18)
C8—H8A0.9600Cl2—Co12.2613 (16)
C8—H8B0.9600Co1—P12.262 (2)
C8—H8C0.9600Co1—P22.264 (2)
C9—P21.812 (8)C7—F61.302 (16)
C9—H9A0.9600C7—F71.311 (17)
C9—H9B0.9600C7—F51.424 (17)
C9—H9C0.9600C7'—F5'1.296 (17)
C10—P21.814 (8)C7'—F6'1.317 (17)
C10—H10A0.9600C7'—F7'1.368 (17)
C10—H10B0.9600
C2—C1—C6112.8 (7)P1—C12—H12B109.5
C2—C1—Co1124.3 (6)H12A—C12—H12B109.5
C6—C1—Co1122.9 (5)P1—C12—H12C109.5
C3—C2—F4117.0 (8)H12A—C12—H12C109.5
C3—C2—C1124.5 (9)H12B—C12—H12C109.5
F4—C2—C1118.5 (7)P1—C13—H13A109.5
F3—C3—C2117.5 (11)P1—C13—H13B109.5
F3—C3—C4120.4 (9)H13A—C13—H13B109.5
C2—C3—C4122.1 (9)P1—C13—H13C109.5
C3—C4—C5115.3 (7)H13A—C13—H13C109.5
C3—C4—C7'115.9 (12)H13B—C13—H13C109.5
C5—C4—C7'128.7 (13)C1—Co1—Cl1123.2 (2)
C3—C4—C7130.4 (12)C1—Co1—Cl2125.5 (2)
C5—C4—C7114.3 (12)Cl1—Co1—Cl2111.29 (7)
C7'—C4—C714.8 (11)C1—Co1—P189.36 (19)
F2—C5—C6117.1 (9)Cl1—Co1—P190.78 (8)
F2—C5—C4121.3 (8)Cl2—Co1—P190.03 (7)
C6—C5—C4121.6 (9)C1—Co1—P289.93 (19)
F1—C6—C5118.0 (8)Cl1—Co1—P289.13 (8)
F1—C6—C1118.3 (6)Cl2—Co1—P290.86 (7)
C5—C6—C1123.8 (8)P1—Co1—P2179.08 (8)
P2—C8—H8A109.5C12—P1—C13105.9 (5)
P2—C8—H8B109.5C12—P1—C11104.9 (4)
H8A—C8—H8B109.5C13—P1—C11105.1 (4)
P2—C8—H8C109.5C12—P1—Co1114.3 (3)
H8A—C8—H8C109.5C13—P1—Co1113.6 (3)
H8B—C8—H8C109.5C11—P1—Co1112.1 (3)
P2—C9—H9A109.5C9—P2—C8105.5 (4)
P2—C9—H9B109.5C9—P2—C10104.9 (4)
H9A—C9—H9B109.5C8—P2—C10104.9 (4)
P2—C9—H9C109.5C9—P2—Co1113.2 (3)
H9A—C9—H9C109.5C8—P2—Co1112.0 (3)
H9B—C9—H9C109.5C10—P2—Co1115.5 (3)
P2—C10—H10A109.5F6—C7—F7121.3 (17)
P2—C10—H10B109.5F6—C7—F5110.9 (16)
H10A—C10—H10B109.5F7—C7—F596.0 (15)
P2—C10—H10C109.5F6—C7—C4116.3 (16)
H10A—C10—H10C109.5F7—C7—C4107.2 (14)
H10B—C10—H10C109.5F5—C7—C4101.6 (13)
P1—C11—H11A109.5F5'—C7'—F6'115.5 (17)
P1—C11—H11B109.5F5'—C7'—F7'102.1 (16)
H11A—C11—H11B109.5F6'—C7'—F7'109.3 (16)
P1—C11—H11C109.5F5'—C7'—C4108.5 (15)
H11A—C11—H11C109.5F6'—C7'—C4115.3 (16)
H11B—C11—H11C109.5F7'—C7'—C4104.8 (14)
P1—C12—H12A109.5
C6—C1—C2—C31.7 (11)C1—Co1—P1—C1257.7 (4)
Co1—C1—C2—C3178.6 (6)Cl1—Co1—P1—C1265.5 (4)
C6—C1—C2—F4179.5 (7)Cl2—Co1—P1—C12176.8 (4)
Co1—C1—C2—F40.2 (10)C1—Co1—P1—C1364.1 (4)
F4—C2—C3—F30.1 (12)Cl1—Co1—P1—C13172.7 (3)
C1—C2—C3—F3178.9 (7)Cl2—Co1—P1—C1361.4 (3)
F4—C2—C3—C4179.7 (8)C1—Co1—P1—C11176.9 (4)
C1—C2—C3—C41.5 (14)Cl1—Co1—P1—C1153.7 (3)
F3—C3—C4—C5179.1 (7)Cl2—Co1—P1—C1157.6 (3)
C2—C3—C4—C50.4 (13)C1—Co1—P2—C963.6 (4)
F3—C3—C4—C7'1.8 (15)Cl1—Co1—P2—C959.6 (4)
C2—C3—C4—C7'177.8 (11)Cl2—Co1—P2—C9170.8 (4)
F3—C3—C4—C72.0 (17)C1—Co1—P2—C8177.3 (4)
C2—C3—C4—C7178.5 (12)Cl1—Co1—P2—C859.6 (3)
C3—C4—C5—F2178.9 (8)Cl2—Co1—P2—C851.7 (3)
C7'—C4—C5—F21.9 (16)C1—Co1—P2—C1057.3 (3)
C7—C4—C5—F22.0 (14)Cl1—Co1—P2—C10179.5 (3)
C3—C4—C5—C62.0 (13)Cl2—Co1—P2—C1068.2 (3)
C7'—C4—C5—C6179.0 (12)C3—C4—C7—F6166.9 (13)
C7—C4—C5—C6177.1 (10)C5—C4—C7—F612.0 (19)
F2—C5—C6—F10.5 (11)C7'—C4—C7—F6180 (5)
C4—C5—C6—F1179.6 (7)C3—C4—C7—F754 (2)
F2—C5—C6—C1179.0 (7)C5—C4—C7—F7127.5 (14)
C4—C5—C6—C11.8 (13)C7'—C4—C7—F740 (4)
C2—C1—C6—F1178.4 (7)C3—C4—C7—F546.5 (19)
Co1—C1—C6—F11.3 (10)C5—C4—C7—F5132.4 (12)
C2—C1—C6—C50.1 (11)C7'—C4—C7—F560 (4)
Co1—C1—C6—C5179.8 (6)C3—C4—C7'—F5'118.0 (15)
C2—C1—Co1—Cl11.3 (7)C5—C4—C7'—F5'65 (2)
C6—C1—Co1—Cl1178.4 (5)C7—C4—C7'—F5'51 (4)
C2—C1—Co1—Cl2178.8 (5)C3—C4—C7'—F6'13 (2)
C6—C1—Co1—Cl21.5 (7)C5—C4—C7'—F6'163.6 (13)
C2—C1—Co1—P189.2 (6)C7—C4—C7'—F6'178 (5)
C6—C1—Co1—P191.1 (6)C3—C4—C7'—F7'133.6 (13)
C2—C1—Co1—P290.2 (6)C5—C4—C7'—F7'43.3 (19)
C6—C1—Co1—P289.5 (6)C7—C4—C7'—F7'58 (4)

Experimental details

Crystal data
Chemical formula[Co(C7F7)Cl2(C3H9P)2]
Mr499.04
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.3321 (19), 13.3657 (19), 25.426 (4)
V3)4190.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.740, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
18353, 3373, 2345
Rint0.052
(sin θ/λ)max1)0.577
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.186, 1.07
No. of reflections3373
No. of parameters223
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.69

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C1—Co11.987 (6)Co1—P12.262 (2)
Cl1—Co12.2290 (18)Co1—P22.264 (2)
Cl2—Co12.2613 (16)
C1—Co1—Cl1123.2 (2)Cl2—Co1—P190.03 (7)
C1—Co1—Cl2125.5 (2)C1—Co1—P289.93 (19)
Cl1—Co1—Cl2111.29 (7)Cl1—Co1—P289.13 (8)
C1—Co1—P189.36 (19)Cl2—Co1—P290.86 (7)
Cl1—Co1—P190.78 (8)P1—Co1—P2179.08 (8)
 

Acknowledgements

The authors gratefully acknowledge support by the NSF of China within the project No. 20872080/20772072.

References

First citationBöhm, V., Gstöttmayr, C., Weskamp, T. & Herrmann, W. (2001). Angew. Chem. Int. Ed. 40, 3387–3389.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSchaub, S., Backes, M. & Radius, U. (2006). J. Am. Chem. Soc. 128, 15964–15965.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, T., Sun, H., Chen, Y., Li, X., Dürr, S., Radius, U. & Harms, K. (2009). Organometallics, 28, 5771–5776.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds