metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-Aqua­(2-carb­oxy­ethyl-κ2C,O)tri­chlorido­tin(IV)–1,4,7,10,13-penta­oxa­cyclo­penta­deca­ne–water (1/1/2)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 March 2010; accepted 26 March 2010; online 10 April 2010)

In the title compound, [Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2O, the SnIV atom is octa­hedrally coordinated within a fac-CO2Cl3 donor set, arising from the C,O-bidentate carboxy­ethyl ligand, a water mol­ecule and three chloride ligands. In the crystal, supra­molecular chains linked by O—H⋯O hydrogen bonds propagate along the c axis These chains are connected into layers in the ac plane via C—H⋯O inter­actions.

Related literature

For original industrial inter­est in functionally substituted alk­yl–tin compounds, see: Lanigen & Weinberg (1976[Lanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134-142.]). For studies concerning the coordination chemistry of functionally substituted alk­yl–tin compounds, see: Harrison et al. (1979[Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17-36.]); Howie et al. (1986[Howie, R. A., Paterson, E. S., Wardell, J. L. & Burley, J. W. (1986). J. Organomet. Chem. 304, 301-308.]); Balasubramanian et al. (1997[Balasubramanian, R., Chohan, Z. H., Doidge-Harrison, S. M. S. V., Howie, R. A. & Wardell, J. L. (1997). Polyhedron, 16, 4283-4295.]); Tian et al. (2005[Tian, L. J., Zhang, L. P., Liu, X. C. & Zhou, Z. Y. (2005). Appl. Organomet. Chem. 19, 198-199.]); de Lima et al. (2009[Lima, G. M. de, Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244-250.]). For related structures of functionally substituted alk­yl–tin compounds, see: Buchanan et al. (1996[Buchanan, H., Howie, R. A., Khan, A., Spencer, G. M., Wardell, J. L. & Aupers, J. H. (1996). J. Chem. Soc. Dalton Trans. pp. 541-548.]); Howie & Wardell (2001[Howie, R. A. & Wardell, J. L. (2001). Acta Cryst. C57, 1041-1043.], 2002[Howie, R. A. & Wardell, S. M. S. V. (2002). Acta Cryst. E58, m220-m222.]). For a review on tin–crown ether compounds, see: Cusack & Smith (1990[Cusack, P. A. & Smith, P. J. (1990). Appl. Organomet. Chem. 4, 311-317.]). For related structures of organotin(IV) and tin(IV) halide complexes with crown ethers, see: Barnes & Weakley (1976[Barnes, J. C. & Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 1786-1791.]); Cusack et al. (1984[Cusack, P. A., Patel, B. N., Smith, P. J., Allen, D. W. & Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 1239-1243.]); Amini et al. (1984[Amini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289-7291.], 2002[Amini, M. M., Foladi, S., Aghabozorg, H. & Ng, S. W. (2002). Main Group Met. Chem. 25, 643-645.]); Russo et al. (1984[Russo, U., Cassol, A. & Silvestri, A. (1984). J. Organomet. Chem. 260, 69-72.]); Valle et al. (1984[Valle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81-84.], 1985[Valle, G., Ruisi, G. & Russo, U. (1985). Inorg. Chim. Acta, 99, L21-L23.]); Rivarola et al. (1986[Rivarola, E., Saiano, F., Fontana, A. & Russo, U. (1986). J. Organomet. Chem. 317, 285-289.]); Hough et al. (1986[Hough, E., Nicholson, D. G. & Vasudevan, A. K. (1986). J. Chem. Soc. Dalton Trans. pp. 2335-2337.]); Bott et al. (1987[Bott, S. G., Prinz, H., Alvanipour, A. & Atwood, J. L. (1987). J. Coord. Chem. 16, 303-309.]); Mitra et al. (1993[Mitra, A., Knobler, C. B. & Johnson, S. E. (1993). Inorg. Chem. 32, 1076-1077.]); Yap et al. (1996[Yap, G. P. A., Amini, M. M., Ng, S. W., Counterman, A. E. & Rheingold, A. L. (1996). Main Group Chem. 1, 359-363.]); Wolff et al. (2009[Wolff, M., Harmening, T., Pöttgen, R. & Feldmann, C. (2009). Inorg. Chem. 48, 3153-3156.]); Wardell et al. (2010[Wardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312-m313.]). For a related tin compound with a 2-carboxy­ethyl ligand, see: Somphon et al. (2006[Somphon, W., Haller, K. J., Rae, A. D. & Ng, S. W. (2006). Acta Cryst. B62, 255-261.]). For the synthesis of MeO2CCH2CH2CO2SnCl3, see: Hutton & Oakes (1976[Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123-133.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2O

  • Mr = 572.42

  • Monoclinic, P 21 /n

  • a = 7.2193 (2) Å

  • b = 29.6516 (13) Å

  • c = 10.3871 (5) Å

  • β = 91.857 (2)°

  • V = 2222.33 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 120 K

  • 0.42 × 0.20 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.621, Tmax = 0.746

  • 12758 measured reflections

  • 3721 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.088

  • S = 1.19

  • 3721 reflections

  • 265 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

Sn—C1 2.148 (3)
Sn—O1 2.284 (2)
Sn—O1w 2.234 (2)
Sn—Cl1 2.4287 (9)
Sn—Cl2 2.4014 (9)
Sn—Cl3 2.3706 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1o⋯O2w 0.84 (3) 1.71 (3) 2.551 (3) 172 (4)
O1w—H1w⋯O3w 0.84 (2) 1.85 (3) 2.640 (3) 156 (3)
O1w—H2w⋯O4 0.84 (3) 1.88 (2) 2.686 (3) 161 (3)
O2w—H3w⋯O3i 0.84 (2) 1.89 (1) 2.720 (3) 172 (3)
O2w—H4w⋯O6i 0.84 (2) 1.92 (2) 2.752 (3) 169 (3)
O3w—H5w⋯O7 0.84 (2) 2.02 (3) 2.827 (3) 162 (3)
O3w—H6w⋯O5 0.84 (3) 1.91 (3) 2.744 (3) 172 (3)
C8—H8b⋯O2ii 0.99 2.52 3.491 (4) 165
C12—H12b⋯O3wiii 0.99 2.42 3.266 (5) 143
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z+1; (iii) -x, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The so-called, estertin chlorides, RO2CCH2CH2SnCl3, as well as the diestertin dichlorides (RO2CCH2CH2)2SnCl2 (R = Me, Et, etc.), were initially made in the 1970's (Hutton & Oakes, 1976) as precursors of organotin mercaptide PVC stabilizers by AZKO Chemie (Lanigen & Weinberg, 1976). This intention has never (yet) been fulfilled industrially. However, interest in the coordination chemistry of such compounds has been maintained until today, with particular interest centering on the coordinating mode of the RO2CCH2CH2 ligand, i.e. whether mono-or bi-dentate (Tian et al., 2005; Balasubramanian et al., 1997; Harrison et al., 1979; de Lima et al., 2009; Buchanan et al., 1996; Howie & Wardell, 2001; Howie & Wardell, 2002; Howie et al., 1986). We now wish to report the structure of fac-aqua(2-carboxyethyl-κ2C,O)trichloridotin(IV) 1,4,7,10,13-pentaoxacyclopentadecane dihydrate, (I). Crown ether complexes of tin and organotin halides have been variously reported (Barnes & Weakley, 1976; Cusack et al., 1984; Amini et al. 1984; Amini et al. 2002; Russo et al., 1984; Valle et al., 1984, 1985; Rivarola et al. 1986; Hough et al., 1986; Bott et al., 1987; Cusack & Smith, 1990; Mitra et al., 1993); Yap et al., 1996; Wolff et al., 2009; Wardell et al., 2010).

The asymmetric unit of (I) comprises an organotin molecule, a 15-crown-5 molecule and two solvent water molecules of crystallisation, Fig. 1. The tin atom exists within a fac-CCl3O2 donor set defined by three Cl atoms, chelating C- and O- atoms from the 2-carboxyethyl ligand, and a coordinated water molecule. The C3–O1 [1.233 (4) Å] and C3–O2 [1.289 (4) Å] bond distances, and the pattern on intermolecular hydrogen bonds (see below) indicate the coordination of the carbonyl-O1 atom. The four non-hydrogen atoms of the chelating ligand are planar with the C1–C2–C3–O1 torsion angle being 0.5 (5) °. However, the five-membered chelate ring is not planar as the tin atom lies above the plane through the chelating ligand as indicated in the values of the Sn–C1–C2–C3 and Sn–O1–C3–C2 torsion angles of 9.1 (4) and -9.3 (4) °, respectively. There is only one other tin structure containing a 2-carboxyethyl ligand available in the literature and this adopts the same mode of coordination (Somphon et al., 2006). The Sn–Cl bond distances span a large range, Table 1, with the shorter Sn—Cl3 bond having the Cl3 atom trans to the C atom of the organic ligand. The longer Sn—Cl1 bond has the Cl1 atom trans to the aqua ligand which forms a shorter Sn–O1w bond distance than the dative Sn–O1 bond, Table 1.

There are a large number of O–H···O hydrogen bonding interactions in the crystal structure of (I), Table 2. One of the H atoms of the aqua ligand forms a hydrogen bond with a lattice water (O3w) molecule and the other H atom is connected to an ether-O atom. Each of the H atoms of the O3w water molecule is connected to an ether-O atom. As a result, a nine-membered {···HOH···OH···OC2O} synthon is formed, Fig. 2. The hydroxyl group forms a hydrogen bond to the second lattice water molecule which, like the O3w water molecule, forms two donor interactions to ether-O atoms so that each ether-O atom participates in the hydrogen bonding scheme. The hydrogen bonds lead to the formation of supramolecular chains along the c axis, Fig. 2. Chains are linked into layers in the ac plane via C–H···O interactions, Table 2 and Fig. 3.

Related literature top

For original industrial interest in functionally substituted alkyl–tin compounds, see: Lanigen & Weinberg (1976). For studies concerning the coordination chemistry of functionally substituted alkyl–tin compounds, see: Harrison et al. (1979); Howie et al. (1986); Balasubramanian et al. (1997); Tian et al. (2005); de Lima et al. (2009). For related structures of functionally substituted alkyl–tin compounds, see: Buchanan et al. (1996); Howie & Wardell (2001, 2002). For a review on tin–crown ether compounds, see: Cusack & Smith (1990). For related structures of organotin(IV) and tin(IV) halide complexes with crown ethers, see: Barnes & Weakley, (1976); Cusack et al. (1984); Amini et al. (1984, 2002); Russo et al. (1984); Valle et al. (1984, 1985); Rivarola et al. (1986); Hough et al. (1986) ; Bott et al. (1987); Mitra et al. (1993); Yap et al. (1996); Wolff et al. (2009); Wardell et al. (2010). For a related tin compound with a 2-carboxyethyl ligand, see: Somphon et al. (2006). For the synthesis of MeO2CCH2CH2CO2SnCl3, see: Hutton & Oakes (1976).

Experimental top

The title compound was obtained from a solution of MeO2CCH2CH2CO2SnCl3 (0.360 g, 1 mmol), obtained from SnCl2, H2C=CHCO2Me and HCl (Hutton & Oakes, 1976), and 15-crown-5 (0.220 g, 1 mmol) in MeOH (20 ml). The solution was gently heated for 30 minutes and maintained at room temperature and colourless blades of (I) were harvested after 4 days. m.pt. 423-426 K. IR: ν 1654 (C=O) cm-1.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The O—H atoms were refined with the distance restraint 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(parent atom).

Structure description top

The so-called, estertin chlorides, RO2CCH2CH2SnCl3, as well as the diestertin dichlorides (RO2CCH2CH2)2SnCl2 (R = Me, Et, etc.), were initially made in the 1970's (Hutton & Oakes, 1976) as precursors of organotin mercaptide PVC stabilizers by AZKO Chemie (Lanigen & Weinberg, 1976). This intention has never (yet) been fulfilled industrially. However, interest in the coordination chemistry of such compounds has been maintained until today, with particular interest centering on the coordinating mode of the RO2CCH2CH2 ligand, i.e. whether mono-or bi-dentate (Tian et al., 2005; Balasubramanian et al., 1997; Harrison et al., 1979; de Lima et al., 2009; Buchanan et al., 1996; Howie & Wardell, 2001; Howie & Wardell, 2002; Howie et al., 1986). We now wish to report the structure of fac-aqua(2-carboxyethyl-κ2C,O)trichloridotin(IV) 1,4,7,10,13-pentaoxacyclopentadecane dihydrate, (I). Crown ether complexes of tin and organotin halides have been variously reported (Barnes & Weakley, 1976; Cusack et al., 1984; Amini et al. 1984; Amini et al. 2002; Russo et al., 1984; Valle et al., 1984, 1985; Rivarola et al. 1986; Hough et al., 1986; Bott et al., 1987; Cusack & Smith, 1990; Mitra et al., 1993); Yap et al., 1996; Wolff et al., 2009; Wardell et al., 2010).

The asymmetric unit of (I) comprises an organotin molecule, a 15-crown-5 molecule and two solvent water molecules of crystallisation, Fig. 1. The tin atom exists within a fac-CCl3O2 donor set defined by three Cl atoms, chelating C- and O- atoms from the 2-carboxyethyl ligand, and a coordinated water molecule. The C3–O1 [1.233 (4) Å] and C3–O2 [1.289 (4) Å] bond distances, and the pattern on intermolecular hydrogen bonds (see below) indicate the coordination of the carbonyl-O1 atom. The four non-hydrogen atoms of the chelating ligand are planar with the C1–C2–C3–O1 torsion angle being 0.5 (5) °. However, the five-membered chelate ring is not planar as the tin atom lies above the plane through the chelating ligand as indicated in the values of the Sn–C1–C2–C3 and Sn–O1–C3–C2 torsion angles of 9.1 (4) and -9.3 (4) °, respectively. There is only one other tin structure containing a 2-carboxyethyl ligand available in the literature and this adopts the same mode of coordination (Somphon et al., 2006). The Sn–Cl bond distances span a large range, Table 1, with the shorter Sn—Cl3 bond having the Cl3 atom trans to the C atom of the organic ligand. The longer Sn—Cl1 bond has the Cl1 atom trans to the aqua ligand which forms a shorter Sn–O1w bond distance than the dative Sn–O1 bond, Table 1.

There are a large number of O–H···O hydrogen bonding interactions in the crystal structure of (I), Table 2. One of the H atoms of the aqua ligand forms a hydrogen bond with a lattice water (O3w) molecule and the other H atom is connected to an ether-O atom. Each of the H atoms of the O3w water molecule is connected to an ether-O atom. As a result, a nine-membered {···HOH···OH···OC2O} synthon is formed, Fig. 2. The hydroxyl group forms a hydrogen bond to the second lattice water molecule which, like the O3w water molecule, forms two donor interactions to ether-O atoms so that each ether-O atom participates in the hydrogen bonding scheme. The hydrogen bonds lead to the formation of supramolecular chains along the c axis, Fig. 2. Chains are linked into layers in the ac plane via C–H···O interactions, Table 2 and Fig. 3.

For original industrial interest in functionally substituted alkyl–tin compounds, see: Lanigen & Weinberg (1976). For studies concerning the coordination chemistry of functionally substituted alkyl–tin compounds, see: Harrison et al. (1979); Howie et al. (1986); Balasubramanian et al. (1997); Tian et al. (2005); de Lima et al. (2009). For related structures of functionally substituted alkyl–tin compounds, see: Buchanan et al. (1996); Howie & Wardell (2001, 2002). For a review on tin–crown ether compounds, see: Cusack & Smith (1990). For related structures of organotin(IV) and tin(IV) halide complexes with crown ethers, see: Barnes & Weakley, (1976); Cusack et al. (1984); Amini et al. (1984, 2002); Russo et al. (1984); Valle et al. (1984, 1985); Rivarola et al. (1986); Hough et al. (1986) ; Bott et al. (1987); Mitra et al. (1993); Yap et al. (1996); Wolff et al. (2009); Wardell et al. (2010). For a related tin compound with a 2-carboxyethyl ligand, see: Somphon et al. (2006). For the synthesis of MeO2CCH2CH2CO2SnCl3, see: Hutton & Oakes (1976).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain aligned along the c axis in the crystal structure of (I) formed through the agency of O–H···O hydrogen bonding interactions (orange dashed lines).
[Figure 3] Fig. 3. A view of the unit cell contents in (I) shown in projection down the c axis and highlighting the C–H···O interactions (blue dashed lines) formed between the chains to form two-dimensional arrays that stack along the b axis; O–H···O hydrogen bonds are shown as orange dashed lines.
fac-Aqua(2-carboxyethyl-κ2C,O)trichloridotin(IV)– 1,4,7,10,13-pentaoxacyclopentadecane–water (1/1/2) top
Crystal data top
[Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2OF(000) = 1160
Mr = 572.42Dx = 1.711 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15234 reflections
a = 7.2193 (2) Åθ = 2.9–27.5°
b = 29.6516 (13) ŵ = 1.56 mm1
c = 10.3871 (5) ÅT = 120 K
β = 91.857 (2)°Blade, colourless
V = 2222.33 (16) Å30.42 × 0.20 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3721 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3241 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.1°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 3535
Tmin = 0.621, Tmax = 0.746l = 1212
12758 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1546P]
where P = (Fo2 + 2Fc2)/3
3721 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.70 e Å3
10 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2OV = 2222.33 (16) Å3
Mr = 572.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2193 (2) ŵ = 1.56 mm1
b = 29.6516 (13) ÅT = 120 K
c = 10.3871 (5) Å0.42 × 0.20 × 0.07 mm
β = 91.857 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3721 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3241 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.746Rint = 0.037
12758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02710 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.70 e Å3
3721 reflectionsΔρmin = 0.74 e Å3
265 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.22564 (3)0.175614 (7)0.29201 (2)0.01417 (11)
Cl10.34019 (12)0.21445 (3)0.10473 (9)0.0209 (2)
Cl20.43021 (12)0.21340 (3)0.44366 (9)0.0211 (2)
Cl30.42241 (11)0.11255 (3)0.26495 (9)0.0186 (2)
O10.0296 (3)0.13662 (7)0.1555 (2)0.0178 (5)
O20.2328 (3)0.14512 (9)0.0433 (2)0.0225 (6)
H1O0.195 (5)0.1229 (8)0.001 (3)0.034*
O30.2678 (3)0.08134 (8)0.6564 (2)0.0199 (6)
O40.0320 (3)0.15697 (8)0.6706 (2)0.0187 (6)
O50.3096 (3)0.12348 (8)0.7855 (2)0.0196 (6)
O60.1948 (3)0.03774 (8)0.8827 (2)0.0198 (6)
O70.0411 (3)0.00568 (8)0.6891 (2)0.0194 (6)
O1W0.1114 (3)0.13208 (8)0.4460 (2)0.0204 (6)
H1W0.168 (4)0.1089 (7)0.473 (3)0.031*
H2W0.056 (4)0.1448 (10)0.506 (2)0.031*
O2W0.1475 (3)0.07709 (8)0.0930 (2)0.0183 (5)
H3W0.194 (4)0.0799 (13)0.1676 (11)0.027*
H4W0.0378 (18)0.0677 (12)0.094 (3)0.027*
O3W0.2298 (3)0.06380 (9)0.5896 (2)0.0228 (6)
H5W0.137 (3)0.0475 (10)0.603 (3)0.034*
H6W0.256 (4)0.0798 (11)0.654 (2)0.034*
C10.0237 (5)0.21467 (12)0.3046 (4)0.0225 (9)
H1A0.07520.21090.39110.027*
H1B0.00510.24700.29240.027*
C20.1649 (5)0.19982 (13)0.2036 (4)0.0255 (9)
H2A0.18310.22450.14040.031*
H2B0.28450.19490.24540.031*
C30.1152 (5)0.15757 (12)0.1323 (3)0.0163 (8)
C40.3106 (5)0.12264 (12)0.5911 (4)0.0195 (8)
H4A0.44660.12620.58000.023*
H4B0.25610.12270.50480.023*
C50.2309 (4)0.16057 (12)0.6714 (4)0.0201 (8)
H5A0.27130.19000.63510.024*
H5B0.27400.15840.76070.024*
C60.0615 (5)0.18000 (11)0.7739 (4)0.0198 (8)
H6A0.01350.16970.85710.024*
H6B0.03980.21290.76610.024*
C70.2661 (5)0.17016 (12)0.7691 (4)0.0205 (8)
H7A0.31180.18040.68510.025*
H7B0.33220.18770.83740.025*
C80.3375 (5)0.10950 (12)0.9175 (4)0.0197 (8)
H8A0.22780.11730.96780.024*
H8B0.44710.12490.95680.024*
C90.3668 (4)0.05926 (12)0.9177 (4)0.0216 (8)
H9A0.46230.05110.85540.026*
H9B0.41010.04911.00440.026*
C100.2127 (5)0.00743 (12)0.8347 (4)0.0236 (9)
H10A0.26320.02750.90340.028*
H10B0.29820.00790.76200.028*
C110.0241 (5)0.02314 (12)0.7904 (4)0.0219 (8)
H11A0.03050.05460.75930.026*
H11B0.06170.02210.86280.026*
C120.2365 (4)0.00224 (12)0.6619 (4)0.0201 (8)
H12A0.30450.00230.74310.024*
H12B0.26490.02620.61530.024*
C130.2938 (5)0.04203 (12)0.5804 (4)0.0192 (8)
H13A0.21740.04370.50310.023*
H13B0.42550.03920.55200.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01453 (16)0.01367 (15)0.01420 (17)0.00086 (9)0.00119 (11)0.00125 (10)
Cl10.0302 (5)0.0175 (4)0.0149 (5)0.0001 (4)0.0009 (4)0.0030 (4)
Cl20.0254 (5)0.0216 (5)0.0161 (5)0.0061 (4)0.0053 (4)0.0014 (4)
Cl30.0191 (4)0.0172 (4)0.0195 (5)0.0051 (3)0.0019 (4)0.0019 (4)
O10.0169 (13)0.0175 (12)0.0188 (14)0.0026 (10)0.0062 (10)0.0055 (11)
O20.0168 (13)0.0307 (15)0.0196 (15)0.0026 (11)0.0035 (11)0.0100 (13)
O30.0264 (14)0.0175 (13)0.0155 (14)0.0019 (10)0.0053 (11)0.0021 (11)
O40.0169 (13)0.0208 (13)0.0184 (15)0.0001 (10)0.0010 (11)0.0043 (12)
O50.0248 (13)0.0202 (13)0.0138 (15)0.0001 (10)0.0028 (11)0.0006 (11)
O60.0137 (12)0.0207 (13)0.0248 (15)0.0007 (10)0.0010 (11)0.0024 (11)
O70.0178 (13)0.0166 (12)0.0240 (15)0.0002 (10)0.0019 (11)0.0037 (11)
O1W0.0256 (14)0.0191 (13)0.0169 (14)0.0009 (11)0.0074 (11)0.0007 (12)
O2W0.0178 (13)0.0218 (13)0.0149 (14)0.0031 (11)0.0034 (10)0.0008 (12)
O3W0.0274 (15)0.0230 (14)0.0183 (15)0.0063 (11)0.0049 (12)0.0037 (12)
C10.0188 (19)0.023 (2)0.026 (2)0.0051 (15)0.0010 (16)0.0038 (17)
C20.0254 (19)0.026 (2)0.025 (2)0.0078 (17)0.0026 (17)0.0091 (18)
C30.0143 (18)0.0206 (19)0.014 (2)0.0030 (15)0.0047 (15)0.0044 (17)
C40.0179 (18)0.024 (2)0.017 (2)0.0047 (15)0.0023 (15)0.0053 (17)
C50.0195 (19)0.0186 (18)0.022 (2)0.0033 (14)0.0034 (16)0.0022 (17)
C60.028 (2)0.0159 (18)0.015 (2)0.0033 (15)0.0020 (16)0.0063 (15)
C70.025 (2)0.0186 (19)0.018 (2)0.0076 (15)0.0036 (16)0.0002 (16)
C80.0129 (18)0.029 (2)0.017 (2)0.0008 (15)0.0035 (15)0.0019 (17)
C90.0153 (18)0.029 (2)0.020 (2)0.0014 (16)0.0012 (15)0.0031 (18)
C100.027 (2)0.0179 (19)0.026 (2)0.0065 (15)0.0012 (17)0.0086 (18)
C110.028 (2)0.0155 (18)0.023 (2)0.0010 (15)0.0019 (16)0.0061 (17)
C120.0172 (19)0.0192 (19)0.024 (2)0.0057 (14)0.0019 (16)0.0086 (17)
C130.0199 (18)0.0215 (19)0.016 (2)0.0014 (15)0.0048 (15)0.0078 (16)
Geometric parameters (Å, º) top
Sn—C12.148 (3)C2—C31.505 (5)
Sn—O12.284 (2)C2—H2A0.9900
Sn—O1w2.234 (2)C2—H2B0.9900
Sn—Cl12.4287 (9)C4—C51.504 (5)
Sn—Cl22.4014 (9)C4—H4A0.9900
Sn—Cl32.3706 (8)C4—H4B0.9900
O1—C31.233 (4)C5—H5A0.9900
O2—C31.289 (4)C5—H5B0.9900
O2—H1O0.84 (3)C6—C71.508 (5)
O3—C131.417 (4)C6—H6A0.9900
O3—C41.429 (4)C6—H6B0.9900
O4—C61.423 (4)C7—H7A0.9900
O4—C51.440 (4)C7—H7B0.9900
O5—C71.428 (4)C8—C91.505 (5)
O5—C81.441 (4)C8—H8A0.9900
O6—C91.433 (4)C8—H8B0.9900
O6—C101.436 (4)C9—H9A0.9900
O7—C111.424 (4)C9—H9B0.9900
O7—C121.433 (4)C10—C111.497 (5)
O1W—H1W0.84 (2)C10—H10A0.9900
O1W—H2W0.84 (3)C10—H10B0.9900
O2W—H3W0.839 (16)C11—H11A0.9900
O2W—H4W0.840 (17)C11—H11B0.9900
O3W—H5W0.84 (2)C12—C131.502 (5)
O3W—H6W0.84 (3)C12—H12A0.9900
C1—C21.504 (5)C12—H12B0.9900
C1—H1A0.9900C13—H13A0.9900
C1—H1B0.9900C13—H13B0.9900
C1—Sn—O1W86.48 (12)O4—C5—H5B110.2
C1—Sn—O178.88 (11)C4—C5—H5B110.2
O1W—Sn—O185.19 (9)H5A—C5—H5B108.5
C1—Sn—Cl3159.90 (10)O4—C6—C7108.9 (3)
O1W—Sn—Cl382.27 (6)O4—C6—H6A109.9
O1—Sn—Cl383.61 (6)C7—C6—H6A109.9
C1—Sn—Cl2101.97 (10)O4—C6—H6B109.9
O1W—Sn—Cl291.92 (7)C7—C6—H6B109.9
O1—Sn—Cl2176.94 (6)H6A—C6—H6B108.3
Cl3—Sn—Cl295.03 (3)O5—C7—C6113.3 (3)
C1—Sn—Cl195.78 (11)O5—C7—H7A108.9
O1W—Sn—Cl1172.17 (7)C6—C7—H7A108.9
O1—Sn—Cl187.89 (6)O5—C7—H7B108.9
Cl3—Sn—Cl193.33 (3)C6—C7—H7B108.9
Cl2—Sn—Cl194.94 (3)H7A—C7—H7B107.7
C3—O1—Sn111.8 (2)O5—C8—C9107.5 (3)
C3—O2—H1O112 (3)O5—C8—H8A110.2
C13—O3—C4114.7 (3)C9—C8—H8A110.2
C6—O4—C5114.1 (3)O5—C8—H8B110.2
C7—O5—C8114.6 (3)C9—C8—H8B110.2
C9—O6—C10114.6 (2)H8A—C8—H8B108.5
C11—O7—C12113.7 (3)O6—C9—C8108.7 (3)
Sn—O1W—H1W121 (2)O6—C9—H9A110.0
Sn—O1W—H2W118 (2)C8—C9—H9A110.0
H1W—O1W—H2W111 (3)O6—C9—H9B110.0
H3W—O2W—H4W112 (3)C8—C9—H9B110.0
H5W—O3W—H6W111 (3)H9A—C9—H9B108.3
C2—C1—Sn110.5 (2)O6—C10—C11107.8 (3)
C2—C1—H1A109.6O6—C10—H10A110.1
Sn—C1—H1A109.6C11—C10—H10A110.1
C2—C1—H1B109.6O6—C10—H10B110.1
Sn—C1—H1B109.6C11—C10—H10B110.1
H1A—C1—H1B108.1H10A—C10—H10B108.5
C1—C2—C3114.8 (3)O7—C11—C10108.4 (3)
C1—C2—H2A108.6O7—C11—H11A110.0
C3—C2—H2A108.6C10—C11—H11A110.0
C1—C2—H2B108.6O7—C11—H11B110.0
C3—C2—H2B108.6C10—C11—H11B110.0
H2A—C2—H2B107.5H11A—C11—H11B108.4
O1—C3—O2122.1 (3)O7—C12—C13107.9 (3)
O1—C3—C2122.5 (3)O7—C12—H12A110.1
O2—C3—C2115.4 (3)C13—C12—H12A110.1
O3—C4—C5107.7 (3)O7—C12—H12B110.1
O3—C4—H4A110.2C13—C12—H12B110.1
C5—C4—H4A110.2H12A—C12—H12B108.4
O3—C4—H4B110.2O3—C13—C12107.7 (3)
C5—C4—H4B110.2O3—C13—H13A110.2
H4A—C4—H4B108.5C12—C13—H13A110.2
O4—C5—C4107.8 (3)O3—C13—H13B110.2
O4—C5—H5A110.2C12—C13—H13B110.2
C4—C5—H5A110.2H13A—C13—H13B108.5
C1—Sn—O1—C310.9 (2)C13—O3—C4—C5165.7 (3)
O1W—Sn—O1—C398.2 (2)C6—O4—C5—C4159.8 (3)
Cl3—Sn—O1—C3179.1 (2)O3—C4—C5—O467.1 (3)
Cl2—Sn—O1—C3117.3 (11)C5—O4—C6—C7174.9 (3)
Cl1—Sn—O1—C385.5 (2)C8—O5—C7—C687.7 (4)
O1W—Sn—C1—C295.8 (3)O4—C6—C7—O562.2 (4)
O1—Sn—C1—C210.0 (3)C7—O5—C8—C9175.7 (3)
Cl3—Sn—C1—C239.8 (5)C10—O6—C9—C8158.9 (3)
Cl2—Sn—C1—C2173.0 (2)O5—C8—C9—O670.4 (3)
Cl1—Sn—C1—C276.7 (3)C9—O6—C10—C11174.4 (3)
Sn—C1—C2—C39.1 (4)C12—O7—C11—C10164.0 (3)
Sn—O1—C3—O2169.4 (3)O6—C10—C11—O761.5 (4)
Sn—O1—C3—C29.3 (4)C11—O7—C12—C13165.3 (3)
C1—C2—C3—O10.5 (5)C4—O3—C13—C12178.0 (3)
C1—C2—C3—O2178.3 (3)O7—C12—C13—O365.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···O2w0.84 (3)1.71 (3)2.551 (3)172 (4)
O1w—H1w···O3w0.84 (2)1.85 (3)2.640 (3)156 (3)
O1w—H2w···O40.84 (3)1.88 (2)2.686 (3)161 (3)
O2w—H3w···O3i0.84 (2)1.89 (1)2.720 (3)172 (3)
O2w—H4w···O6i0.84 (2)1.92 (2)2.752 (3)169 (3)
O3w—H5w···O70.84 (2)2.02 (3)2.827 (3)162 (3)
O3w—H6w···O50.84 (3)1.91 (3)2.744 (3)172 (3)
C8—H8b···O2ii0.992.523.491 (4)165
C12—H12b···O3wiii0.992.423.266 (5)143
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2O
Mr572.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.2193 (2), 29.6516 (13), 10.3871 (5)
β (°) 91.857 (2)
V3)2222.33 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.42 × 0.20 × 0.07
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.621, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12758, 3721, 3241
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.088, 1.19
No. of reflections3721
No. of parameters265
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.74

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—C12.148 (3)Sn—Cl12.4287 (9)
Sn—O12.284 (2)Sn—Cl22.4014 (9)
Sn—O1w2.234 (2)Sn—Cl32.3706 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···O2w0.84 (3)1.71 (3)2.551 (3)172 (4)
O1w—H1w···O3w0.84 (2)1.85 (3)2.640 (3)156 (3)
O1w—H2w···O40.84 (3)1.88 (2)2.686 (3)161 (3)
O2w—H3w···O3i0.839 (16)1.888 (14)2.720 (3)172 (3)
O2w—H4w···O6i0.840 (17)1.92 (2)2.752 (3)169 (3)
O3w—H5w···O70.84 (2)2.02 (3)2.827 (3)162 (3)
O3w—H6w···O50.84 (3)1.91 (3)2.744 (3)172 (3)
C8—H8b···O2ii0.992.523.491 (4)165
C12—H12b···O3wiii0.992.423.266 (5)143
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationAmini, M. M., Foladi, S., Aghabozorg, H. & Ng, S. W. (2002). Main Group Met. Chem. 25, 643–645.  CrossRef CAS Google Scholar
First citationAmini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289–7291.  CSD CrossRef CAS Web of Science Google Scholar
First citationBalasubramanian, R., Chohan, Z. H., Doidge-Harrison, S. M. S. V., Howie, R. A. & Wardell, J. L. (1997). Polyhedron, 16, 4283–4295.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarnes, J. C. & Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 1786–1791.  CSD CrossRef Web of Science Google Scholar
First citationBott, S. G., Prinz, H., Alvanipour, A. & Atwood, J. L. (1987). J. Coord. Chem. 16, 303–309.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuchanan, H., Howie, R. A., Khan, A., Spencer, G. M., Wardell, J. L. & Aupers, J. H. (1996). J. Chem. Soc. Dalton Trans. pp. 541–548.  CSD CrossRef Web of Science Google Scholar
First citationCusack, P. A., Patel, B. N., Smith, P. J., Allen, D. W. & Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 1239–1243.  CSD CrossRef Web of Science Google Scholar
First citationCusack, P. A. & Smith, P. J. (1990). Appl. Organomet. Chem. 4, 311–317.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17–36.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHough, E., Nicholson, D. G. & Vasudevan, A. K. (1986). J. Chem. Soc. Dalton Trans. pp. 2335–2337.  CSD CrossRef Web of Science Google Scholar
First citationHowie, R. A., Paterson, E. S., Wardell, J. L. & Burley, J. W. (1986). J. Organomet. Chem. 304, 301–308.  CSD CrossRef CAS Web of Science Google Scholar
First citationHowie, R. A. & Wardell, J. L. (2001). Acta Cryst. C57, 1041–1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHowie, R. A. & Wardell, S. M. S. V. (2002). Acta Cryst. E58, m220–m222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123–133.  CrossRef CAS Google Scholar
First citationLanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134–142.  Google Scholar
First citationLima, G. M. de, Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244–250.  Google Scholar
First citationMitra, A., Knobler, C. B. & Johnson, S. E. (1993). Inorg. Chem. 32, 1076–1077.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRivarola, E., Saiano, F., Fontana, A. & Russo, U. (1986). J. Organomet. Chem. 317, 285–289.  CrossRef CAS Web of Science Google Scholar
First citationRusso, U., Cassol, A. & Silvestri, A. (1984). J. Organomet. Chem. 260, 69–72.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomphon, W., Haller, K. J., Rae, A. D. & Ng, S. W. (2006). Acta Cryst. B62, 255–261.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTian, L. J., Zhang, L. P., Liu, X. C. & Zhou, Z. Y. (2005). Appl. Organomet. Chem. 19, 198–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationValle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81–84.  CSD CrossRef CAS Web of Science Google Scholar
First citationValle, G., Ruisi, G. & Russo, U. (1985). Inorg. Chim. Acta, 99, L21–L23.  CSD CrossRef CAS Web of Science Google Scholar
First citationWardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312–m313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWolff, M., Harmening, T., Pöttgen, R. & Feldmann, C. (2009). Inorg. Chem. 48, 3153–3156.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYap, G. P. A., Amini, M. M., Ng, S. W., Counterman, A. E. & Rheingold, A. L. (1996). Main Group Chem. 1, 359–363.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds