organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-ethyl-4-hydr­­oxy-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 31 March 2010; accepted 1 April 2010; online 14 April 2010)

In the title compound, C12H13NO5S, the thia­zine ring adopts a half chair conformation and an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions, leading to zigzag chains along the b axis.

Related literature

For background to the biological properties of thia­zines, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For related structures, see: Arshad et al. (2009a[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009a). Acta Cryst. E65, o3025.],b[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009b). Acta Cryst. E65, o3077.]). For graph-set notation, see: Bernstein, et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO5S

  • Mr = 283.29

  • Orthorhombic, P n a 21

  • a = 7.2460 (6) Å

  • b = 20.548 (2) Å

  • c = 8.5710 (8) Å

  • V = 1276.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.24 × 0.14 × 0.10 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.974

  • 14253 measured reflections

  • 3148 independent reflections

  • 1270 reflections with I > 2σ(I)

  • Rint = 0.133

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.102

  • S = 0.95

  • 3148 reflections

  • 176 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1464 Friedel pairs

  • Flack parameter: 0.07 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.82 1.92 2.628 (5) 144
C4—H4⋯O4i 0.93 2.55 3.395 (5) 152
C10—H10B⋯O2ii 0.96 2.52 3.320 (5) 141
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) [-x+1, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: X-SEED (Barbur, 2001[Barbur, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Under the heading of synthesis and X-ray studies and biological evaluation of thiazine related heterocycles our group has already reported biological applications (Zia-ur-Rehman et al., 2005, 2006) and the crystal structures of 1,2-benzothiazine derivatives (Arshad et al., 2009a,b) II & III. The title compound Methyl 2-ethyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (I) is different only in H-alkylation. The hydrogen bonding interactions in I, II and III are pretty much common. The intramolecular O–H···O interaction tend to rise the six membered ring motif R11(6) (Bernstein, et al., 1995) which is almost planar with the r.m.s deviaton of 0.0156Å and iclined at dihedral angle of 25.1 (6)° & 17.5 (6)° with respect to the thiazine and benzene ring respectively. The half chair shaped thiazine ring exihibits a maximum deviation from the least square plane measure 0.347 (2)Å for S1 and 0.345 (2)Å for C1. The intermoleculear C–H···O hydrogen bonding forms zig-zag network along the b axes. The bond lngths and bond angles are compareable with the molecules II and III.

Related literature top

For background to the biological properties of thiazines, see: Zia-ur-Rehman et al. (2005, 2006). For related structures, see: Arshad et al. (2009a,b). For graph-set notation, see: Bernstein, et al. (1995).

Experimental top

Ethyl iodide (250 mg, 1.6 mmol) was added drop wise to the mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (350 mg, 1.37 mmol), anhydrous potassium carbonate (161 mg, 1.6 mmol) and dimethylformamide (5 ml) in a round bottom flask. Contents were stirred at room temperature for 5 h under nitrogen atmosphere and poured over ice cooled water (100 ml) resulting white precipetates, which was filtered and washed with cold water. Colourless needles of (I) were obtained by re-crystallization from a methanol solution under slow evaporation.

Structure description top

Under the heading of synthesis and X-ray studies and biological evaluation of thiazine related heterocycles our group has already reported biological applications (Zia-ur-Rehman et al., 2005, 2006) and the crystal structures of 1,2-benzothiazine derivatives (Arshad et al., 2009a,b) II & III. The title compound Methyl 2-ethyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (I) is different only in H-alkylation. The hydrogen bonding interactions in I, II and III are pretty much common. The intramolecular O–H···O interaction tend to rise the six membered ring motif R11(6) (Bernstein, et al., 1995) which is almost planar with the r.m.s deviaton of 0.0156Å and iclined at dihedral angle of 25.1 (6)° & 17.5 (6)° with respect to the thiazine and benzene ring respectively. The half chair shaped thiazine ring exihibits a maximum deviation from the least square plane measure 0.347 (2)Å for S1 and 0.345 (2)Å for C1. The intermoleculear C–H···O hydrogen bonding forms zig-zag network along the b axes. The bond lngths and bond angles are compareable with the molecules II and III.

For background to the biological properties of thiazines, see: Zia-ur-Rehman et al. (2005, 2006). For related structures, see: Arshad et al. (2009a,b). For graph-set notation, see: Bernstein, et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: X-SEED (Barbur, 2001); WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing for (I) showing the inter and intramolecular hydrogen bondings using dashed lines. Hydrogen atoms have been omitted for clarity.
Methyl 2-ethyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide top
Crystal data top
C12H13NO5SF(000) = 592
Mr = 283.29Dx = 1.475 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 733 reflections
a = 7.2460 (6) Åθ = 2.6–17.3°
b = 20.548 (2) ŵ = 0.27 mm1
c = 8.5710 (8) ÅT = 296 K
V = 1276.1 (2) Å3Cut needle, colourless
Z = 40.24 × 0.14 × 0.10 mm
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3148 independent reflections
Radiation source: fine-focus sealed tube1270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.133
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.938, Tmax = 0.974k = 2627
14253 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0219P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.22 e Å3
3148 reflectionsΔρmin = 0.25 e Å3
176 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0062 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1464 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (12)
Crystal data top
C12H13NO5SV = 1276.1 (2) Å3
Mr = 283.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.2460 (6) ŵ = 0.27 mm1
b = 20.548 (2) ÅT = 296 K
c = 8.5710 (8) Å0.24 × 0.14 × 0.10 mm
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3148 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1270 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.974Rint = 0.133
14253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.22 e Å3
S = 0.95Δρmin = 0.25 e Å3
3148 reflectionsAbsolute structure: Flack (1983), 1464 Friedel pairs
176 parametersAbsolute structure parameter: 0.07 (12)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19292 (16)0.06952 (6)0.49242 (15)0.0514 (4)
O10.0578 (4)0.10023 (16)0.3936 (4)0.0648 (10)
O20.1809 (4)0.00107 (13)0.5198 (4)0.0716 (10)
O30.3931 (4)0.26033 (12)0.5272 (4)0.0532 (8)
H30.44440.27090.44580.080*
O40.5638 (4)0.23848 (15)0.2618 (4)0.0563 (10)
O50.5818 (4)0.13380 (14)0.1843 (4)0.0550 (9)
N10.3974 (4)0.08716 (17)0.4241 (4)0.0413 (9)
C10.1976 (6)0.1103 (2)0.6695 (5)0.0422 (11)
C20.1285 (6)0.0824 (2)0.8054 (6)0.0536 (14)
H20.07320.04160.80270.064*
C30.1429 (6)0.1160 (3)0.9446 (6)0.0560 (15)
H3A0.10300.09701.03700.067*
C40.2163 (6)0.1776 (2)0.9459 (5)0.0589 (15)
H40.22010.20091.03890.071*
C50.2849 (6)0.2056 (2)0.8105 (6)0.0560 (14)
H50.33410.24740.81390.067*
C60.2811 (6)0.1722 (2)0.6708 (6)0.0396 (11)
C70.3701 (5)0.1955 (2)0.5296 (6)0.0406 (11)
C80.4294 (6)0.1557 (2)0.4160 (5)0.0372 (11)
C90.5296 (6)0.1805 (3)0.2822 (5)0.0471 (12)
C100.6951 (6)0.1538 (2)0.0543 (5)0.0707 (16)
H10A0.62880.18480.00790.106*
H10B0.72520.11650.00830.106*
H10C0.80660.17330.09260.106*
C110.5572 (6)0.0441 (2)0.4634 (5)0.0548 (15)
H11A0.64780.04750.38050.066*
H11B0.51430.00060.46570.066*
C120.6504 (6)0.0588 (3)0.6154 (7)0.0840 (19)
H12A0.69280.10310.61520.126*
H12B0.75370.03010.62900.126*
H12C0.56460.05270.69940.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0554 (7)0.0474 (7)0.0516 (7)0.0144 (7)0.0019 (9)0.0055 (8)
O10.051 (2)0.083 (3)0.060 (2)0.0095 (18)0.010 (2)0.003 (2)
O20.097 (2)0.0399 (19)0.078 (3)0.0283 (16)0.014 (2)0.010 (2)
O30.065 (2)0.033 (2)0.061 (3)0.0045 (14)0.0097 (19)0.0007 (19)
O40.067 (2)0.042 (2)0.059 (2)0.0064 (17)0.0121 (19)0.0070 (18)
O50.068 (2)0.048 (2)0.050 (2)0.0000 (17)0.0208 (19)0.0001 (19)
N10.044 (2)0.037 (2)0.043 (2)0.0036 (17)0.0052 (18)0.0020 (18)
C10.038 (3)0.048 (3)0.040 (3)0.000 (2)0.000 (2)0.006 (3)
C20.038 (3)0.056 (4)0.066 (4)0.003 (2)0.009 (3)0.005 (3)
C30.056 (3)0.062 (4)0.050 (4)0.010 (3)0.012 (3)0.008 (3)
C40.062 (3)0.075 (4)0.039 (4)0.017 (3)0.006 (3)0.010 (3)
C50.061 (3)0.051 (3)0.056 (4)0.002 (3)0.003 (3)0.011 (3)
C60.039 (3)0.035 (3)0.045 (3)0.002 (2)0.001 (3)0.000 (3)
C70.044 (3)0.033 (3)0.045 (3)0.005 (2)0.003 (2)0.001 (3)
C80.040 (3)0.027 (3)0.045 (3)0.004 (2)0.005 (2)0.002 (2)
C90.043 (3)0.058 (3)0.040 (3)0.003 (3)0.006 (3)0.001 (3)
C100.086 (4)0.065 (4)0.061 (4)0.004 (3)0.036 (3)0.002 (3)
C110.057 (3)0.037 (3)0.070 (4)0.010 (2)0.005 (3)0.010 (3)
C120.069 (4)0.102 (5)0.081 (5)0.019 (3)0.013 (3)0.015 (4)
Geometric parameters (Å, º) top
S1—O21.429 (3)C4—C51.388 (6)
S1—O11.441 (3)C4—H40.9300
S1—N11.634 (3)C5—C61.381 (6)
S1—C11.734 (5)C5—H50.9300
O3—C71.343 (4)C6—C71.452 (6)
O3—H30.8200C7—C81.343 (5)
O4—C91.229 (5)C8—C91.450 (6)
O5—C91.330 (5)C10—H10A0.9600
O5—C101.444 (5)C10—H10B0.9600
N1—C81.428 (5)C10—H10C0.9600
N1—C111.495 (5)C11—C121.499 (6)
C1—C21.392 (6)C11—H11A0.9700
C1—C61.408 (5)C11—H11B0.9700
C2—C31.383 (6)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.372 (6)C12—H12C0.9600
C3—H3A0.9300
O2—S1—O1119.1 (2)C1—C6—C7118.8 (4)
O2—S1—N1109.44 (18)C8—C7—O3123.6 (4)
O1—S1—N1107.97 (19)C8—C7—C6123.0 (4)
O2—S1—C1109.4 (2)O3—C7—C6113.3 (4)
O1—S1—C1108.4 (2)C7—C8—N1120.9 (4)
N1—S1—C1100.9 (2)C7—C8—C9121.3 (4)
C7—O3—H3109.5N1—C8—C9117.9 (4)
C9—O5—C10116.3 (3)O4—C9—O5123.6 (4)
C8—N1—C11117.9 (3)O4—C9—C8123.7 (4)
C8—N1—S1112.5 (3)O5—C9—C8112.7 (4)
C11—N1—S1119.4 (3)O5—C10—H10A109.5
C2—C1—C6121.3 (4)O5—C10—H10B109.5
C2—C1—S1121.8 (4)H10A—C10—H10B109.5
C6—C1—S1116.9 (4)O5—C10—H10C109.5
C3—C2—C1119.3 (4)H10A—C10—H10C109.5
C3—C2—H2120.4H10B—C10—H10C109.5
C1—C2—H2120.4N1—C11—C12115.2 (4)
C4—C3—C2119.8 (5)N1—C11—H11A108.5
C4—C3—H3A120.1C12—C11—H11A108.5
C2—C3—H3A120.1N1—C11—H11B108.5
C3—C4—C5120.9 (4)C12—C11—H11B108.5
C3—C4—H4119.5H11A—C11—H11B107.5
C5—C4—H4119.5C11—C12—H12A109.5
C6—C5—C4120.8 (4)C11—C12—H12B109.5
C6—C5—H5119.6H12A—C12—H12B109.5
C4—C5—H5119.6C11—C12—H12C109.5
C5—C6—C1117.7 (4)H12A—C12—H12C109.5
C5—C6—C7123.3 (4)H12B—C12—H12C109.5
O2—S1—N1—C8171.2 (3)S1—C1—C6—C74.9 (5)
O1—S1—N1—C857.8 (3)C5—C6—C7—C8153.4 (4)
C1—S1—N1—C855.9 (3)C1—C6—C7—C821.9 (6)
O2—S1—N1—C1126.6 (4)C5—C6—C7—O324.2 (6)
O1—S1—N1—C11157.6 (3)C1—C6—C7—O3160.5 (4)
C1—S1—N1—C1188.7 (3)O3—C7—C8—N1178.8 (4)
O2—S1—C1—C222.5 (4)C6—C7—C8—N13.8 (6)
O1—S1—C1—C2108.9 (4)O3—C7—C8—C92.0 (6)
N1—S1—C1—C2137.8 (4)C6—C7—C8—C9175.4 (4)
O2—S1—C1—C6155.2 (3)C11—N1—C8—C7105.7 (4)
O1—S1—C1—C673.4 (4)S1—N1—C8—C739.5 (5)
N1—S1—C1—C639.9 (4)C11—N1—C8—C973.6 (5)
C6—C1—C2—C30.3 (7)S1—N1—C8—C9141.2 (3)
S1—C1—C2—C3177.3 (3)C10—O5—C9—O44.3 (7)
C1—C2—C3—C43.3 (7)C10—O5—C9—C8175.3 (4)
C2—C3—C4—C53.2 (7)C7—C8—C9—O41.5 (7)
C3—C4—C5—C60.0 (7)N1—C8—C9—O4179.3 (4)
C4—C5—C6—C12.9 (6)C7—C8—C9—O5178.1 (4)
C4—C5—C6—C7172.4 (4)N1—C8—C9—O51.1 (5)
C2—C1—C6—C52.8 (6)C8—N1—C11—C1257.6 (5)
S1—C1—C6—C5179.5 (3)S1—N1—C11—C1285.1 (4)
C2—C1—C6—C7172.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.922.628 (5)144
C4—H4···O4i0.932.553.395 (5)152
C10—H10B···O2ii0.962.523.320 (5)141
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC12H13NO5S
Mr283.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)7.2460 (6), 20.548 (2), 8.5710 (8)
V3)1276.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.24 × 0.14 × 0.10
Data collection
DiffractometerBruker KAPPA APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.938, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
14253, 3148, 1270
Rint0.133
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.102, 0.95
No. of reflections3148
No. of parameters176
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25
Absolute structureFlack (1983), 1464 Friedel pairs
Absolute structure parameter0.07 (12)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), X-SEED (Barbur, 2001); WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.922.628 (5)144
C4—H4···O4i0.932.553.395 (5)152
C10—H10B···O2ii0.962.523.320 (5)141
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z1/2.
 

Footnotes

Current address: Department of Chemistry, Georgetown University, 37th and O St NW, Washington DC 20057-212 USA.

Acknowledgements

The authors acknowledge the Higher Education Commission (HEC) of Pakistan for providing a grant under the project `Strengthening the Materials Chemistry Laboratory at GC University, Lahore'. MNA also acknowledges the HEC for providing a fellowship under the Inter­national Research Support Initiative Program (IRSIP)

References

First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009a). Acta Cryst. E65, o3025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009b). Acta Cryst. E65, o3077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbur, L. J. (2001). J. Supramol. Chem. 1, 189–191.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds