organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 2-hydr­­oxy-3,5-di­nitro­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 April 2010; accepted 20 April 2010; online 28 April 2010)

In the title mol­ecular salt, C6H9N2+·C7H3N2O7, the 2-amino-5-methyl­pyridinium cation is essentially planar, with a maximum deviation of 0.023 (1) Å. There is an intra­molecular O—H⋯O hydrogen bond in the 3,5-dinitro­salicylate anion, which generates an S(6) ring motif. In the crystal, the protonated N atom and the 2-amino group are hydrogen bonded to the carboxyl­ate O atoms via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. Weak inter­molecular C—H⋯O inter­actions help to further stabilize the crystal structure.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]). For 3,5-dinitro­salicylic acid, see: Hindawey et al. (1980[Hindawey, A. M., Nasser, A. M. G., Issa, R. M. & Issa, Y. M. (1980). Indian J. Chem. Sect. A, 19, 615-619.]); Issa et al. (1981[Issa, Y. M., Hindawey, A. M., El-Kholy, A. E. & Issa, R. M. (1981). Gazz. Chim. Ital. 111, 27-33.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H3N2O7

  • Mr = 336.27

  • Triclinic, [P \overline 1]

  • a = 5.8673 (7) Å

  • b = 8.0991 (9) Å

  • c = 15.2437 (17) Å

  • α = 86.844 (3)°

  • β = 84.252 (3)°

  • γ = 81.209 (3)°

  • V = 711.69 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.29 × 0.14 × 0.08 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.990

  • 12709 measured reflections

  • 4947 independent reflections

  • 3922 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.150

  • S = 1.08

  • 4947 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O7 0.82 1.66 2.4200 (13) 152
N1—H1⋯O6i 0.86 1.82 2.6768 (14) 174
N2—H2A⋯O7i 0.86 2.11 2.9668 (15) 176
N2—H2B⋯O1ii 0.86 2.16 2.8468 (15) 137
N2—H2B⋯O2ii 0.86 2.40 3.1723 (16) 149
C2—H2⋯O4iii 0.93 2.49 3.4073 (16) 169
C4—H4⋯O3iv 0.93 2.39 3.2371 (16) 151
C5—H5⋯O2ii 0.93 2.44 3.2328 (17) 143
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) x-1, y-1, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The nitro-substituted aromatic acid 3,5-dinitrosalicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. A large number of both neutral and proton-transfer compounds of Lewis bases with DNSA, together with their IR spectra have been reported (Hindawey et al., 1980; Issa et al., 1981) in the literature. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 3,5-dinitrosalicylate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-methylpyridine resulted in the widening of C1—N1—C2 angle of the pyridinium ring to 123.48 (10)°, compared to the corresponding angle of 117.4° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.023 (1) Å for atom N1. The bond lengths and angles are normal (Allen et al., 1987). The phenol oxygen atoms are bent slightly away from the mean plane of the benzene ring [torsion angle O1-C7-C8-C9 = 179.70 (12)°].

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O6 and O7) via a pair of intermolecular N1—H1···O6 and N2—H2A···O7 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). There is an intramolecular O—H···O hydrogen bond in the 3,5-dinitrosalicylate anion, which generates an S(6) ring motif. The crystal structure is further stabilized by weak C—H···O (Table 1) hydrogen bonds.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Nahringbauer & Kvick (1977). For 3,5-dinitrosalicylic acid, see: Hindawey et al. (1980); Issa et al. (1981). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and 3,5-dinitrosalicylic acid (58 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and yellow blocks of (I) appeared after a few days.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å, N–H = 0.86 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). The methyl H atoms were positioned geometrically [C–H = 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The nitro-substituted aromatic acid 3,5-dinitrosalicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. A large number of both neutral and proton-transfer compounds of Lewis bases with DNSA, together with their IR spectra have been reported (Hindawey et al., 1980; Issa et al., 1981) in the literature. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 3,5-dinitrosalicylate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-methylpyridine resulted in the widening of C1—N1—C2 angle of the pyridinium ring to 123.48 (10)°, compared to the corresponding angle of 117.4° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.023 (1) Å for atom N1. The bond lengths and angles are normal (Allen et al., 1987). The phenol oxygen atoms are bent slightly away from the mean plane of the benzene ring [torsion angle O1-C7-C8-C9 = 179.70 (12)°].

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O6 and O7) via a pair of intermolecular N1—H1···O6 and N2—H2A···O7 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). There is an intramolecular O—H···O hydrogen bond in the 3,5-dinitrosalicylate anion, which generates an S(6) ring motif. The crystal structure is further stabilized by weak C—H···O (Table 1) hydrogen bonds.

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Nahringbauer & Kvick (1977). For 3,5-dinitrosalicylic acid, see: Hindawey et al. (1980); Issa et al. (1981). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) networks. H atoms are not involing the hydrogen bond interactions are omitted for clarity.
2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate top
Crystal data top
C6H9N2+·C7H3N2O7Z = 2
Mr = 336.27F(000) = 348
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8673 (7) ÅCell parameters from 5139 reflections
b = 8.0991 (9) Åθ = 2.7–32.4°
c = 15.2437 (17) ŵ = 0.13 mm1
α = 86.844 (3)°T = 100 K
β = 84.252 (3)°Block, yellow
γ = 81.209 (3)°0.29 × 0.14 × 0.08 mm
V = 711.69 (14) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4947 independent reflections
Radiation source: fine-focus sealed tube3922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 32.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.963, Tmax = 0.990k = 1211
12709 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.3055P]
where P = (Fo2 + 2Fc2)/3
4947 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C6H9N2+·C7H3N2O7γ = 81.209 (3)°
Mr = 336.27V = 711.69 (14) Å3
Triclinic, P1Z = 2
a = 5.8673 (7) ÅMo Kα radiation
b = 8.0991 (9) ŵ = 0.13 mm1
c = 15.2437 (17) ÅT = 100 K
α = 86.844 (3)°0.29 × 0.14 × 0.08 mm
β = 84.252 (3)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3922 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.990Rint = 0.023
12709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.08Δρmax = 0.51 e Å3
4947 reflectionsΔρmin = 0.46 e Å3
219 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50349 (18)0.28625 (13)0.24313 (7)0.0151 (2)
H10.48770.27680.18820.018*
N20.82364 (19)0.41676 (14)0.19955 (7)0.0176 (2)
H2A0.80600.40150.14540.021*
H2B0.93520.46620.21210.021*
C10.6777 (2)0.36374 (15)0.26413 (8)0.0146 (2)
C20.3509 (2)0.22205 (16)0.30452 (8)0.0162 (2)
H20.23530.16920.28590.019*
C30.3654 (2)0.23421 (16)0.39271 (8)0.0177 (2)
C40.5424 (2)0.31915 (17)0.41660 (8)0.0196 (2)
H40.55530.33180.47610.023*
C50.6949 (2)0.38321 (16)0.35500 (8)0.0180 (2)
H50.80880.43910.37260.022*
C60.2014 (2)0.1628 (2)0.46135 (9)0.0252 (3)
H6A0.09300.11150.43290.038*
H6B0.11920.25080.49710.038*
H6C0.28730.08060.49800.038*
O10.17251 (16)0.61810 (13)0.14298 (6)0.01924 (19)
H1A0.16380.61190.08990.029*
O20.10528 (18)0.60967 (13)0.31694 (7)0.0243 (2)
O30.28454 (18)0.76459 (15)0.38862 (6)0.0270 (2)
O40.93341 (17)0.99542 (13)0.26211 (7)0.0237 (2)
O51.00019 (18)1.02494 (14)0.11971 (8)0.0274 (2)
O60.55546 (18)0.76372 (13)0.07527 (6)0.0222 (2)
O70.26539 (17)0.63243 (12)0.01529 (6)0.01923 (19)
N30.25086 (18)0.70325 (14)0.31952 (7)0.0166 (2)
N40.89119 (18)0.97295 (13)0.18590 (8)0.0181 (2)
C70.3389 (2)0.70035 (15)0.15497 (8)0.0136 (2)
C80.3891 (2)0.74498 (15)0.23904 (8)0.0141 (2)
C90.5696 (2)0.83248 (15)0.24908 (8)0.0152 (2)
H90.60040.85880.30490.018*
C100.7029 (2)0.87992 (15)0.17497 (8)0.0148 (2)
C110.6613 (2)0.84379 (15)0.09005 (8)0.0154 (2)
H110.75170.87880.04090.018*
C120.4831 (2)0.75506 (14)0.08054 (7)0.0136 (2)
C130.4365 (2)0.71642 (15)0.01015 (8)0.0160 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0161 (4)0.0167 (5)0.0128 (4)0.0032 (4)0.0022 (3)0.0010 (3)
N20.0184 (5)0.0215 (5)0.0143 (4)0.0086 (4)0.0004 (3)0.0001 (4)
C10.0161 (5)0.0138 (5)0.0138 (5)0.0018 (4)0.0014 (4)0.0003 (4)
C20.0144 (5)0.0164 (5)0.0180 (5)0.0032 (4)0.0014 (4)0.0009 (4)
C30.0183 (5)0.0184 (5)0.0156 (5)0.0022 (4)0.0005 (4)0.0009 (4)
C40.0238 (6)0.0234 (6)0.0123 (5)0.0048 (5)0.0033 (4)0.0007 (4)
C50.0200 (5)0.0205 (6)0.0149 (5)0.0058 (5)0.0039 (4)0.0005 (4)
C60.0225 (6)0.0321 (7)0.0206 (6)0.0078 (5)0.0030 (5)0.0045 (5)
O10.0192 (4)0.0257 (5)0.0154 (4)0.0105 (4)0.0028 (3)0.0014 (3)
O20.0271 (5)0.0276 (5)0.0202 (5)0.0141 (4)0.0037 (4)0.0011 (4)
O30.0285 (5)0.0422 (6)0.0122 (4)0.0098 (5)0.0019 (4)0.0062 (4)
O40.0210 (4)0.0230 (5)0.0296 (5)0.0032 (4)0.0110 (4)0.0068 (4)
O50.0235 (5)0.0269 (5)0.0337 (6)0.0121 (4)0.0010 (4)0.0021 (4)
O60.0286 (5)0.0266 (5)0.0127 (4)0.0099 (4)0.0000 (3)0.0007 (3)
O70.0215 (4)0.0242 (5)0.0142 (4)0.0094 (4)0.0031 (3)0.0008 (3)
N30.0163 (4)0.0197 (5)0.0134 (4)0.0017 (4)0.0011 (3)0.0005 (4)
N40.0144 (4)0.0149 (5)0.0261 (5)0.0027 (4)0.0048 (4)0.0025 (4)
C70.0133 (5)0.0139 (5)0.0135 (5)0.0018 (4)0.0015 (4)0.0009 (4)
C80.0137 (5)0.0158 (5)0.0128 (5)0.0021 (4)0.0006 (4)0.0009 (4)
C90.0145 (5)0.0151 (5)0.0162 (5)0.0007 (4)0.0038 (4)0.0030 (4)
C100.0125 (5)0.0132 (5)0.0195 (5)0.0031 (4)0.0028 (4)0.0017 (4)
C110.0148 (5)0.0140 (5)0.0171 (5)0.0019 (4)0.0007 (4)0.0010 (4)
C120.0147 (5)0.0144 (5)0.0119 (5)0.0029 (4)0.0014 (4)0.0008 (4)
C130.0187 (5)0.0162 (5)0.0136 (5)0.0028 (4)0.0028 (4)0.0014 (4)
Geometric parameters (Å, º) top
N1—C11.3509 (15)O1—H1A0.8200
N1—C21.3668 (15)O2—N31.2302 (14)
N1—H10.8600O3—N31.2348 (14)
N2—C11.3355 (15)O4—N41.2404 (15)
N2—H2A0.8600O5—N41.2291 (15)
N2—H2B0.8600O6—C131.2331 (15)
C1—C51.4181 (16)O7—C131.3067 (15)
C2—C31.3652 (17)N3—C81.4546 (15)
C2—H20.9300N4—C101.4563 (15)
C3—C41.4164 (18)C7—C81.4208 (16)
C3—C61.5019 (18)C7—C121.4372 (16)
C4—C51.3681 (18)C8—C91.3861 (16)
C4—H40.9300C9—C101.3794 (17)
C5—H50.9300C9—H90.9300
C6—H6A0.9600C10—C111.3956 (17)
C6—H6B0.9600C11—C121.3793 (16)
C6—H6C0.9600C11—H110.9300
O1—C71.2957 (14)C12—C131.4943 (16)
C1—N1—C2123.48 (10)O2—N3—O3122.24 (11)
C1—N1—H1118.2O2—N3—C8119.70 (10)
C2—N1—H1118.3O3—N3—C8118.06 (11)
C1—N2—H2A120.0O5—N4—O4123.31 (11)
C1—N2—H2B120.0O5—N4—C10118.76 (11)
H2A—N2—H2B120.0O4—N4—C10117.93 (11)
N2—C1—N1119.16 (11)O1—C7—C8123.94 (11)
N2—C1—C5123.65 (11)O1—C7—C12120.07 (10)
N1—C1—C5117.18 (11)C8—C7—C12115.98 (10)
C3—C2—N1121.14 (11)C9—C8—C7122.15 (11)
C3—C2—H2119.4C9—C8—N3116.22 (10)
N1—C2—H2119.4C7—C8—N3121.63 (10)
C2—C3—C4116.59 (11)C10—C9—C8118.97 (11)
C2—C3—C6122.06 (12)C10—C9—H9120.5
C4—C3—C6121.34 (12)C8—C9—H9120.5
C5—C4—C3122.13 (11)C9—C10—C11122.23 (11)
C5—C4—H4118.9C9—C10—N4118.70 (11)
C3—C4—H4118.9C11—C10—N4119.06 (11)
C4—C5—C1119.43 (11)C12—C11—C10118.54 (11)
C4—C5—H5120.3C12—C11—H11120.7
C1—C5—H5120.3C10—C11—H11120.7
C3—C6—H6A109.5C11—C12—C7122.12 (10)
C3—C6—H6B109.5C11—C12—C13118.93 (10)
H6A—C6—H6B109.5C7—C12—C13118.95 (10)
C3—C6—H6C109.5O6—C13—O7123.31 (11)
H6A—C6—H6C109.5O6—C13—C12120.35 (11)
H6B—C6—H6C109.5O7—C13—C12116.34 (10)
C7—O1—H1A109.5
C2—N1—C1—N2177.44 (11)N3—C8—C9—C10178.15 (10)
C2—N1—C1—C52.27 (17)C8—C9—C10—C110.44 (18)
C1—N1—C2—C30.56 (19)C8—C9—C10—N4179.53 (11)
N1—C2—C3—C41.24 (18)O5—N4—C10—C9175.21 (11)
N1—C2—C3—C6179.26 (12)O4—N4—C10—C94.88 (17)
C2—C3—C4—C51.29 (19)O5—N4—C10—C113.91 (17)
C6—C3—C4—C5179.21 (13)O4—N4—C10—C11176.00 (11)
C3—C4—C5—C10.4 (2)C9—C10—C11—C121.15 (18)
N2—C1—C5—C4177.56 (12)N4—C10—C11—C12179.76 (11)
N1—C1—C5—C42.14 (18)C10—C11—C12—C70.51 (18)
O1—C7—C8—C9179.70 (12)C10—C11—C12—C13179.74 (11)
C12—C7—C8—C91.52 (17)O1—C7—C12—C11179.60 (11)
O1—C7—C8—N31.24 (19)C8—C7—C12—C110.77 (17)
C12—C7—C8—N3177.54 (10)O1—C7—C12—C130.37 (17)
O2—N3—C8—C9171.71 (11)C8—C7—C12—C13178.46 (10)
O3—N3—C8—C98.51 (17)C11—C12—C13—O60.21 (18)
O2—N3—C8—C79.17 (18)C7—C12—C13—O6179.05 (11)
O3—N3—C8—C7170.60 (11)C11—C12—C13—O7179.85 (11)
C7—C8—C9—C100.96 (18)C7—C12—C13—O70.59 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.662.4200 (13)152
N1—H1···O6i0.861.822.6768 (14)174
N2—H2A···O7i0.862.112.9668 (15)176
N2—H2B···O1ii0.862.162.8468 (15)137
N2—H2B···O2ii0.862.403.1723 (16)149
C2—H2···O4iii0.932.493.4073 (16)169
C4—H4···O3iv0.932.393.2371 (16)151
C5—H5···O2ii0.932.443.2328 (17)143
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x1, y1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H3N2O7
Mr336.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.8673 (7), 8.0991 (9), 15.2437 (17)
α, β, γ (°)86.844 (3), 84.252 (3), 81.209 (3)
V3)711.69 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.29 × 0.14 × 0.08
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12709, 4947, 3922
Rint0.023
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.150, 1.08
No. of reflections4947
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.662.4200 (13)152
N1—H1···O6i0.861.822.6768 (14)174
N2—H2A···O7i0.862.112.9668 (15)176
N2—H2B···O1ii0.862.162.8468 (15)137
N2—H2B···O2ii0.862.403.1723 (16)149
C2—H2···O4iii0.932.493.4073 (16)169
C4—H4···O3iv0.932.393.2371 (16)151
C5—H5···O2ii0.932.443.2328 (17)143
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x1, y1, z; (iv) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: mhemamalini2k3@yahoo.co.in.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHindawey, A. M., Nasser, A. M. G., Issa, R. M. & Issa, Y. M. (1980). Indian J. Chem. Sect. A, 19, 615–619.  Google Scholar
First citationIssa, Y. M., Hindawey, A. M., El-Kholy, A. E. & Issa, R. M. (1981). Gazz. Chim. Ital. 111, 27–33.  CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds