organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 4-iso­propyl-2-oxo-6-phenyl-3,4-di­hydro-2H-pyran-3-carboxyl­ate

aChinese PLA Postgraduate Medical School, No. 28 Fuxing Road, Beijing 100853, People's Republic of China, bDepartment of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, People's Republic of China, and cState Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd 38, Beijing 100191, People's Republic of China
*Correspondence e-mail: yumiao301@gmail.com

(Received 23 February 2010; accepted 13 April 2010; online 17 April 2010)

In the title compound, C19H24O4, the six-membered lactone ring adopts an envelope conformation with the tert-butoxy­carbonyl and isopropyl substituents in axial positions, and the phenyl group in an equatorial position. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For the applications and synthesis of endocyclic enol lactones, see: Davies & Jin (2004[Davies, H. M. L. & Jin, Q. H. (2004). Proc. Natl. Acad. Sci. 101, 5472-5475.]); Evans et al. (2005[Evans, D. A., Thomson, R. J. & Franco, F. (2005). J. Am. Chem. Soc. 127, 10816-10817.]); Krafft & Katzenellenbogen (1981[Krafft, G. A. & Katzenellenbogen, J. A. (1981). J. Am. Chem. Soc. 103, 5459-5466.]); Li et al. (2007[Li, Y., Yu, Z. & Alper, H. (2007). Org. Lett. 9, 1647-1649.]); Zeni et al. (2004[Zeni, G. & Larock, R. C. (2004). Chem. Rev. 104, 2285-2309.]); Zhao et al. (1997[Zhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne, G. W. A., Pommier, Y. & Burke, T. R. Jr (1997). J. Med. Chem. 40, 242-249.]); Jimenez-Tenorio et al. (2001[Jimenez-Tenorio, M., Puerta, M. C., Valerga, P., Moreno-Dorado, F. J., Guerra, F. M. & Massanet, G. M. (2001). Chem. Commun. pp. 2324-2325.]). For the synthesis, see: Li et al. (2009[Li, S., Jia, W. & Jiao, N. (2009). Adv. Synth. Catal. 351, 569-575.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24O4

  • Mr = 316.38

  • Triclinic, [P \overline 1]

  • a = 8.6163 (9) Å

  • b = 10.888 (1) Å

  • c = 11.261 (1) Å

  • α = 68.393 (2)°

  • β = 79.118 (2)°

  • γ = 67.998 (2)°

  • V = 909.09 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.48 × 0.46 × 0.42 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.760, Tmax = 1.000

  • 4986 measured reflections

  • 3510 independent reflections

  • 2759 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.158

  • S = 1.04

  • 3510 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.44 3.407 (2) 170
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Endocyclic enol lactones are important structural elements of biologically active natural products (Zhao et al., 1997) and useful synthetic intermediates for organic synthesis (Evans et al., 2005, Davies et al., 2004). The cyclization of alkynoic acids under acidic conditions (Krafft et al., 1981) , employing transition-metal complexes as catalysts (Zeni et al., 2004, Valerga et al., 2001),and the carbonylation coupling of alkynes and 1,3-dicarbonyl compounds are main synthetic pathways for the preparation of Enol lactones (Li et al., 2007)

In the title compound as shown in Fig. 1, the six-membered lactone ring adopts an envelope conformation with the tert-butoxycarbonyl, isopropyl and phenyl groups attached to it. The tert-butoxycarbonyl and isopropyl groups occupy axial positions, and the phenyl group occupies equatorial position. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between the pyran H atom and the oxygen of the CO unit in pyran ring, with a C2—H2···O1i (Table 1).

Related literature top

For the applications and synthesis of endocyclic enol lactones, see: Davies et al. (2004); Evans et al. (2005); Krafft et al. (1981); Li et al. (2007); Zeni et al. (2004); Zhao et al. (1997); Jimenez-Tenorio et al. (2001). For the synthesis, see: Li et al. (2009).

Experimental top

The title compound was obtained as a by-product in the copper-catalyzed tandem conjugate addition–cyclization–hydrolysis–decarboxylation reactions of alkynes and 5-alkylidene-Meldrum's acids (Jiao et al., 2009) acids as follows: To a mixture of CuBr (20 mg, 0.1 mmol), 1-ethynylbenzene (102 mg, 1 mmol) in H2O : t-BuOH = 10 : 1 (3 ml) was added and 2,2-dimethyl-5-(2-methylpropylidene)-1,3-dioxane-4,6-dione (99 mg, 0.5 mmol) at room temperature. The resulting mixture was refluxed for 10 h monitored by TLC. After evaporation, the residue was carefully purified by flash chromatography on silica gel. The title compound was obtained as a by-product (25% yield), which was crystallized from n-hexane-ethyl acetate.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.98 Å for methyne and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methyne H atoms, and 1.5Ueq(C) for methyl H atoms.

Structure description top

Endocyclic enol lactones are important structural elements of biologically active natural products (Zhao et al., 1997) and useful synthetic intermediates for organic synthesis (Evans et al., 2005, Davies et al., 2004). The cyclization of alkynoic acids under acidic conditions (Krafft et al., 1981) , employing transition-metal complexes as catalysts (Zeni et al., 2004, Valerga et al., 2001),and the carbonylation coupling of alkynes and 1,3-dicarbonyl compounds are main synthetic pathways for the preparation of Enol lactones (Li et al., 2007)

In the title compound as shown in Fig. 1, the six-membered lactone ring adopts an envelope conformation with the tert-butoxycarbonyl, isopropyl and phenyl groups attached to it. The tert-butoxycarbonyl and isopropyl groups occupy axial positions, and the phenyl group occupies equatorial position. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between the pyran H atom and the oxygen of the CO unit in pyran ring, with a C2—H2···O1i (Table 1).

For the applications and synthesis of endocyclic enol lactones, see: Davies et al. (2004); Evans et al. (2005); Krafft et al. (1981); Li et al. (2007); Zeni et al. (2004); Zhao et al. (1997); Jimenez-Tenorio et al. (2001). For the synthesis, see: Li et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, - y + 2, - z + 1.]
tert-Butyl 4-isopropyl-2-oxo-6-phenyl-3,4-dihydro-2H-pyran-3-carboxylate top
Crystal data top
C19H24O4Z = 2
Mr = 316.38F(000) = 340
Triclinic, P1Dx = 1.156 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6163 (9) ÅCell parameters from 2216 reflections
b = 10.888 (1) Åθ = 4.8–55.3°
c = 11.261 (1) ŵ = 0.08 mm1
α = 68.393 (2)°T = 293 K
β = 79.118 (2)°Prismatic, colorless
γ = 67.998 (2)°0.48 × 0.46 × 0.42 mm
V = 909.09 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3510 independent reflections
Radiation source: fine-focus sealed tube2759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.0°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1013
Tmin = 0.760, Tmax = 1.000l = 1312
4986 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.0377P]
where P = (Fo2 + 2Fc2)/3
3510 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H24O4γ = 67.998 (2)°
Mr = 316.38V = 909.09 (15) Å3
Triclinic, P1Z = 2
a = 8.6163 (9) ÅMo Kα radiation
b = 10.888 (1) ŵ = 0.08 mm1
c = 11.261 (1) ÅT = 293 K
α = 68.393 (2)°0.48 × 0.46 × 0.42 mm
β = 79.118 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3510 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2759 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 1.000Rint = 0.051
4986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3510 reflectionsΔρmin = 0.21 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04144 (14)0.87317 (11)0.66284 (11)0.0535 (3)
O20.07228 (13)0.64576 (11)0.71597 (10)0.0461 (3)
O30.48770 (16)0.75686 (16)0.51105 (14)0.0721 (4)
O40.33639 (14)0.77581 (13)0.69310 (12)0.0554 (3)
C10.06511 (19)0.77682 (15)0.63769 (14)0.0408 (4)
C20.19583 (19)0.78720 (16)0.52821 (14)0.0425 (4)
H20.15600.88050.46440.051*
C30.2282 (2)0.67697 (16)0.46303 (15)0.0441 (4)
H30.33640.66940.41430.053*
C40.2483 (2)0.53947 (16)0.56580 (15)0.0450 (4)
H40.31130.45810.54640.054*
C50.18081 (19)0.52752 (15)0.68321 (15)0.0412 (4)
C60.3589 (2)0.77079 (16)0.57572 (16)0.0470 (4)
C70.4744 (3)0.7625 (3)0.7630 (2)0.0739 (6)
C80.5394 (3)0.8833 (3)0.6928 (3)0.0982 (9)
H8A0.58960.87640.61080.147*
H8B0.62160.87990.74180.147*
H8C0.44810.97030.68120.147*
C90.3851 (4)0.7727 (4)0.8901 (2)0.1092 (10)
H9A0.29580.86100.87640.164*
H9B0.46300.76580.94480.164*
H9C0.33980.69780.92960.164*
C100.6078 (4)0.6211 (3)0.7773 (4)0.1282 (12)
H10A0.55560.55090.80000.192*
H10B0.67960.59920.84320.192*
H10C0.67300.62330.69790.192*
C110.0973 (2)0.7132 (2)0.36787 (17)0.0589 (5)
H110.11940.62830.34670.071*
C120.1187 (4)0.8256 (3)0.2436 (2)0.0887 (8)
H12A0.04100.84100.18450.133*
H12B0.23120.79570.20760.133*
H12C0.09760.91110.26010.133*
C130.0809 (3)0.7518 (3)0.4235 (2)0.0799 (6)
H13A0.11040.83860.43980.120*
H13B0.09090.67930.50210.120*
H13C0.15490.76220.36390.120*
C140.1969 (2)0.39882 (16)0.79280 (14)0.0423 (4)
C150.0804 (2)0.39429 (19)0.89627 (17)0.0575 (5)
H150.00920.47500.89750.069*
C160.0954 (3)0.2717 (2)0.99749 (19)0.0686 (6)
H160.01670.27011.06650.082*
C170.2272 (3)0.1519 (2)0.99593 (19)0.0678 (6)
H170.23810.06921.06430.081*
C180.3423 (3)0.15430 (19)0.89392 (19)0.0637 (5)
H180.43000.07260.89250.076*
C190.3295 (2)0.27597 (18)0.79372 (17)0.0531 (4)
H190.40990.27660.72580.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0522 (7)0.0401 (7)0.0579 (7)0.0079 (5)0.0052 (5)0.0165 (5)
O20.0517 (6)0.0357 (6)0.0438 (6)0.0129 (5)0.0106 (5)0.0134 (5)
O30.0540 (8)0.0982 (11)0.0823 (10)0.0365 (7)0.0214 (7)0.0508 (9)
O40.0482 (7)0.0722 (9)0.0523 (7)0.0250 (6)0.0004 (5)0.0241 (6)
C10.0431 (8)0.0347 (8)0.0416 (8)0.0115 (7)0.0013 (6)0.0111 (6)
C20.0481 (9)0.0342 (8)0.0390 (8)0.0142 (7)0.0015 (7)0.0068 (6)
C30.0499 (9)0.0437 (9)0.0368 (8)0.0174 (7)0.0050 (7)0.0129 (7)
C40.0528 (9)0.0372 (8)0.0431 (9)0.0126 (7)0.0014 (7)0.0156 (7)
C50.0432 (8)0.0351 (8)0.0437 (9)0.0113 (6)0.0007 (6)0.0145 (7)
C60.0498 (9)0.0401 (9)0.0508 (10)0.0178 (7)0.0057 (7)0.0159 (7)
C70.0590 (12)0.1008 (17)0.0697 (13)0.0321 (12)0.0105 (10)0.0277 (12)
C80.0908 (18)0.139 (2)0.108 (2)0.0700 (17)0.0064 (15)0.0615 (18)
C90.110 (2)0.184 (3)0.0641 (15)0.076 (2)0.0044 (14)0.0459 (18)
C100.094 (2)0.116 (3)0.146 (3)0.0030 (18)0.057 (2)0.026 (2)
C110.0786 (13)0.0560 (11)0.0459 (10)0.0254 (9)0.0091 (9)0.0156 (8)
C120.133 (2)0.0810 (16)0.0502 (12)0.0445 (15)0.0187 (13)0.0041 (11)
C130.0670 (13)0.1032 (18)0.0811 (15)0.0288 (12)0.0189 (11)0.0356 (13)
C140.0498 (9)0.0409 (9)0.0378 (8)0.0173 (7)0.0034 (7)0.0123 (7)
C150.0672 (11)0.0478 (10)0.0471 (10)0.0165 (8)0.0072 (8)0.0120 (8)
C160.0870 (14)0.0654 (13)0.0459 (10)0.0332 (11)0.0097 (10)0.0086 (9)
C170.0943 (15)0.0496 (11)0.0497 (11)0.0275 (11)0.0122 (10)0.0020 (8)
C180.0752 (13)0.0427 (10)0.0580 (12)0.0073 (9)0.0148 (10)0.0071 (8)
C190.0539 (10)0.0487 (10)0.0482 (10)0.0123 (8)0.0030 (8)0.0112 (8)
Geometric parameters (Å, º) top
O1—C11.1927 (18)C9—H9C0.9600
O2—C11.3584 (18)C10—H10A0.9600
O2—C51.4091 (17)C10—H10B0.9600
O3—C61.198 (2)C10—H10C0.9600
O4—C61.318 (2)C11—C131.508 (3)
O4—C71.482 (2)C11—C121.517 (3)
C1—C21.507 (2)C11—H110.9800
C2—C61.523 (2)C12—H12A0.9600
C2—C31.542 (2)C12—H12B0.9600
C2—H20.9800C12—H12C0.9600
C3—C41.489 (2)C13—H13A0.9600
C3—C111.545 (2)C13—H13B0.9600
C3—H30.9800C13—H13C0.9600
C4—C51.320 (2)C14—C151.386 (2)
C4—H40.9300C14—C191.394 (2)
C5—C141.467 (2)C15—C161.380 (3)
C7—C101.510 (4)C15—H150.9300
C7—C81.512 (4)C16—C171.375 (3)
C7—C91.513 (3)C16—H160.9300
C8—H8A0.9600C17—C181.368 (3)
C8—H8B0.9600C17—H170.9300
C8—H8C0.9600C18—C191.370 (2)
C9—H9A0.9600C18—H180.9300
C9—H9B0.9600C19—H190.9300
C1—O2—C5120.35 (11)H9B—C9—H9C109.5
C6—O4—C7122.54 (14)C7—C10—H10A109.5
O1—C1—O2117.45 (14)C7—C10—H10B109.5
O1—C1—C2125.81 (14)H10A—C10—H10B109.5
O2—C1—C2116.73 (12)C7—C10—H10C109.5
C1—C2—C6109.81 (13)H10A—C10—H10C109.5
C1—C2—C3112.32 (12)H10B—C10—H10C109.5
C6—C2—C3109.70 (13)C13—C11—C12111.18 (19)
C1—C2—H2108.3C13—C11—C3113.38 (15)
C6—C2—H2108.3C12—C11—C3111.50 (16)
C3—C2—H2108.3C13—C11—H11106.8
C4—C3—C2107.53 (12)C12—C11—H11106.8
C4—C3—C11112.76 (13)C3—C11—H11106.8
C2—C3—C11115.19 (14)C11—C12—H12A109.5
C4—C3—H3107.0C11—C12—H12B109.5
C2—C3—H3107.0H12A—C12—H12B109.5
C11—C3—H3107.0C11—C12—H12C109.5
C5—C4—C3123.13 (14)H12A—C12—H12C109.5
C5—C4—H4118.4H12B—C12—H12C109.5
C3—C4—H4118.4C11—C13—H13A109.5
C4—C5—O2121.22 (13)C11—C13—H13B109.5
C4—C5—C14127.91 (14)H13A—C13—H13B109.5
O2—C5—C14110.81 (12)C11—C13—H13C109.5
O3—C6—O4126.45 (17)H13A—C13—H13C109.5
O3—C6—C2122.48 (16)H13B—C13—H13C109.5
O4—C6—C2111.06 (13)C15—C14—C19118.15 (15)
O4—C7—C10108.8 (2)C15—C14—C5121.59 (15)
O4—C7—C8109.19 (19)C19—C14—C5120.24 (14)
C10—C7—C8113.0 (2)C16—C15—C14120.91 (17)
O4—C7—C9101.57 (16)C16—C15—H15119.5
C10—C7—C9111.9 (2)C14—C15—H15119.5
C8—C7—C9111.7 (2)C17—C16—C15119.78 (19)
C7—C8—H8A109.5C17—C16—H16120.1
C7—C8—H8B109.5C15—C16—H16120.1
H8A—C8—H8B109.5C18—C17—C16120.00 (17)
C7—C8—H8C109.5C18—C17—H17120.0
H8A—C8—H8C109.5C16—C17—H17120.0
H8B—C8—H8C109.5C17—C18—C19120.62 (18)
C7—C9—H9A109.5C17—C18—H18119.7
C7—C9—H9B109.5C19—C18—H18119.7
H9A—C9—H9B109.5C18—C19—C14120.52 (17)
C7—C9—H9C109.5C18—C19—H19119.7
H9A—C9—H9C109.5C14—C19—H19119.7
C5—O2—C1—O1172.04 (14)C3—C2—C6—O4134.60 (13)
C5—O2—C1—C29.4 (2)C6—O4—C7—C1061.0 (3)
O1—C1—C2—C697.55 (18)C6—O4—C7—C862.8 (2)
O2—C1—C2—C680.92 (16)C6—O4—C7—C9179.16 (19)
O1—C1—C2—C3140.10 (16)C4—C3—C11—C1372.2 (2)
O2—C1—C2—C341.43 (19)C2—C3—C11—C1351.7 (2)
C1—C2—C3—C447.02 (17)C4—C3—C11—C12161.41 (17)
C6—C2—C3—C475.39 (15)C2—C3—C11—C1274.6 (2)
C1—C2—C3—C1179.62 (17)C4—C5—C14—C15158.33 (18)
C6—C2—C3—C11157.96 (13)O2—C5—C14—C1518.9 (2)
C2—C3—C4—C525.9 (2)C4—C5—C14—C1920.1 (3)
C11—C3—C4—C5102.21 (19)O2—C5—C14—C19162.68 (14)
C3—C4—C5—O25.5 (2)C19—C14—C15—C160.2 (3)
C3—C4—C5—C14177.58 (15)C5—C14—C15—C16178.69 (17)
C1—O2—C5—C415.6 (2)C14—C15—C16—C170.3 (3)
C1—O2—C5—C14166.99 (13)C15—C16—C17—C180.4 (3)
C7—O4—C6—O30.8 (3)C16—C17—C18—C191.2 (3)
C7—O4—C6—C2179.96 (15)C17—C18—C19—C141.3 (3)
C1—C2—C6—O3170.02 (16)C15—C14—C19—C180.6 (3)
C3—C2—C6—O346.1 (2)C5—C14—C19—C18177.89 (16)
C1—C2—C6—O410.70 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.443.407 (2)170
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC19H24O4
Mr316.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6163 (9), 10.888 (1), 11.261 (1)
α, β, γ (°)68.393 (2), 79.118 (2), 67.998 (2)
V3)909.09 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.46 × 0.42
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.760, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4986, 3510, 2759
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.158, 1.04
No. of reflections3510
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.443.407 (2)170.2
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors thank the EPSRC for financial support.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, H. M. L. & Jin, Q. H. (2004). Proc. Natl. Acad. Sci. 101, 5472–5475.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, D. A., Thomson, R. J. & Franco, F. (2005). J. Am. Chem. Soc. 127, 10816–10817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJimenez-Tenorio, M., Puerta, M. C., Valerga, P., Moreno-Dorado, F. J., Guerra, F. M. & Massanet, G. M. (2001). Chem. Commun. pp. 2324–2325.  Web of Science CrossRef Google Scholar
First citationKrafft, G. A. & Katzenellenbogen, J. A. (1981). J. Am. Chem. Soc. 103, 5459–5466.  CrossRef CAS Web of Science Google Scholar
First citationLi, S., Jia, W. & Jiao, N. (2009). Adv. Synth. Catal. 351, 569–575.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Yu, Z. & Alper, H. (2007). Org. Lett. 9, 1647–1649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeni, G. & Larock, R. C. (2004). Chem. Rev. 104, 2285–2309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne, G. W. A., Pommier, Y. & Burke, T. R. Jr (1997). J. Med. Chem. 40, 242–249.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds