metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­chlorido{2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1-tri­methyl­silyl-1H-imidazole-κN3}titanium(IV) tetra­hydro­furan hemisolvate

aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, The North-West University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China, bKey State Key Laboratory of Elementoorganic Chemistry, Nankai University, Weijing Rd 94, Tianjing 300071, People's Republic of China, and cN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninskii Prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: maxborzov@mail.ru

(Received 2 April 2010; accepted 14 April 2010; online 21 April 2010)

The title compound, [Ti(C15H23N2Si)Cl3]·0.5C4H8O, has been prepared from {2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1H-imidazolyl-κN1}bis­(N,N-diethyl­amido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, by reaction with excess of Me3SiCl in tetra­hydro­furan (THF) at 353 K. The crystal structure contains THF as adduct solvent, disordered around a center of inversion. The presence of THF and the adduct ratio has been independently supported by 1H NMR spectroscopy. The coordination polyhedron of the Ti atom is distorted square-pyramidal, assuming the cyclo­penta­dienyl (Cp) ring occupies one coordination site. The Ti, Si and CH2 group C atoms only deviate slightly from the imidazole ring plane [by 0.021 (4), 0.133 (4) and 0.094 (4) Å, respectively]. Comparison of the principal geometric parameters with those of the few known structurally characterized analogues reveal small differences in bond lengths and angles at the Ti atom. The title complex is only stable in THF-d8 in the presence of excess Me3SiCl, otherwise it exists in an equilibrium with equimolar amounts of dichlorido{2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1H-imidazolyl-κN3}titanium(IV) and chloro­trimethyl­silane.

Related literature

For a description of cyclo­penta­dienes with pendant 1H-imidazol(in)-2-yl side-chain functional groups and group 4 transition metal complexes of general type [η5-Cp-(CPh2CH2)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr) , see: Krut'ko et al. (2006[Krut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574-1580.]); Nie et al. (2008[Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355-2368.]). For the geometric parameters of structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type, see: trichloro­{2-[2-(η5-cyclo­penta­dien­yl)-2,2-diphenyl­ethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti (Krut'ko et al., 2006[Krut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574-1580.]); trichloro­{1-[2-(η5-cyclo­penta­dien­yl)eth­yl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi (Herrmann et al., 1995[Herrmann, W. A., Morawietz, M. J. A., Priermeier, T. & Mashima, K. (1995). J. Organomet. Chem. 486, 291-295.]); trichloro­[8-(η5-2,3,4,5-tetra­methyl­cyclo­penta­dien­yl)quinoline-κN]titanium(IV), C18H18Cl3NTi (Enders et al., 1997[Enders, M., Rudolph, R. & Pritzkow, H. (1997). J. Organomet. Chem. 549, 251-256.]); trichloro­[8-(η5-2,3-dimethyl­cyclo­penta­dien­yl)quinoline-κN]titanium(IV), C16H14Cl3NTi (Enders et al., 1996[Enders, M., Rudolph, R. & Pritzkow, H. (1996). Chem. Ber. 129, 459-463.]). For the preparation of [2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1H-imidazolyl-κN1]bis­(N,N-di­ethyl­amido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, see: Wang et al. (2009[Wang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255-m259.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C15H23N2Si)Cl3]·0.5C4H8O

  • Mr = 449.75

  • Monoclinic, P 21 /c

  • a = 8.8033 (9) Å

  • b = 11.8201 (11) Å

  • c = 21.481 (2) Å

  • β = 99.399 (1)°

  • V = 2205.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.29 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.894

  • 10736 measured reflections

  • 3869 independent reflections

  • 2812 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.02

  • 3869 reflections

  • 249 parameters

  • 70 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Geometrical parameters (Å, °) of the environment of the Ti atom in the title compound compared with those of related structures

  (I) (III) (IV) (V) (VI)
Ti1—N2 2.153 (2) 2.163 (2) 2.357 (1) 2.274 (4) 2.261 (2)
Ti1—Cl1 2.3475 (9) 2.3513 (8) 2.3217 (4) 2.322 (2) 2.331 (1)
Ti1—Cl2 2.3377 (10) 2.3486 (8) 2.3729 (5) 2.326 (2) 2.338 (1)
Ti1—Cl3 2.3533 (9) 2.3340 (8) 2.2895 (5) 2.300 (2) 2.307 (1)
Ti1⋯Cpcent 2.030 (1) 2.036 2.025 2.035 2.047
Ti1⋯PL1 2.029 (1) 2.034 (1) 2.025 2.034 2.046
Ti1⋯PL2 0.022 (5) 0.608   0.175 0.215
N2—Ti1⋯Cpcent 111.2 (1)a 110.20 99.66 101.44 101.64
Cl1—Ti1⋯Cpcent 109.2 (1)a 110.08 116.37 116.68 113.90
Cl2—Ti1⋯Cpcent 110.69 (9)a 109.75 107.63 109.28 109.73
Cl3—Ti1⋯Cpcent 110.58 (9)a 110.93 114.71 113.76 115.56
Cl1—Ti1—N2 80.79 (7) 79.24 (6) 82.57 (2) 78.64 80.32
Cl2—Ti1—N2 138.10 (6) 140.05 (6) 152.70 (3) 149.27 148.63
Cl3—Ti1—N2 80.82 (7) 81.19 (6) 83.45 (2) 80.23 78.94
Cl2—Ti1—Cl1 85.38 (4) 86.06 (3) 85.18 (2) 87.84 87.14
Cl2—Ti1—Cl3 85.07 (4) 86.01 (3) 85.30 (2) 86.95 87.20
Cl3—Ti1—Cl1 139.98 (4) 138.52 (3) 128.55 (2) 128.07 129.12
PL1–PL2 81.0 (1) 78.335   82.491 85.895
Notes: (a) the angle between the Ti1—N2 bond and the normal to PL1; (I)[link] this work; (III) Krut'ko et al. (2006[Krut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574-1580.]); (IV) Herrmann et al. (1995[Herrmann, W. A., Morawietz, M. J. A., Priermeier, T. & Mashima, K. (1995). J. Organomet. Chem. 486, 291-295.]); (V) Enders et al. (1997[Enders, M., Rudolph, R. & Pritzkow, H. (1997). J. Organomet. Chem. 549, 251-256.]); (VI) Enders et al. (1996[Enders, M., Rudolph, R. & Pritzkow, H. (1996). Chem. Ber. 129, 459-463.]). PL1 and Cpcent denote the C11–C15 Cp ring r.m.s. plane and centroid, respectively, while PL2 denotes an r.m.s. plane through the non-H atoms of a heterocyclic ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL, OLEX2 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), (A), based on them were described not long ago (Krut'ko et al., 2006; Nie et al., 2008). All Ti and Zr complexes reported in these papers possess Me-groups at the N1 atoms and were prepared by reactions of metal tetrachlorides with monolithium- or trimethylsilyl-derivatives of parent cyclopentadienes. Recently a synthetic approach to η5-Cp-tris(sec-amido)TiIV type complexes of general formula [η5-Cp-(C1 or 2-link)-imidazolyl-κN1]-MIV(NEt2)2, (B), was suggested (Wang et al., 2009). Here we report on the crystal structure of trichloro{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1-trimethylsilyl-1H-imidazole-κN3}titanium(IV) that crystallizes as an 1:0.5 adduct with tetrahydrofuran (THF) (I), which was prepared by a reaction with chlorotrimethylsilane via a facile (B) to (A) conversion method. The molecular structure of (I) is discussed in comparison with those of its few known analogues.

Complex (I) was prepared by treatment of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, (II), with excess of Me3SiCl in a THF medium at elevated temperature (see Fig. 2 and Experimental for details). The presence of THF in the crystal and the adduct ratio were not evident in the structure solution and refinement stages but were independently supported by 1H NMR spectroscopy data [multiplets at δ(H) 1.78 and 3.62 p.p.m. with both of the relative integral intensities corresponding to 2 H]. The THF molecule was found and located using SQUEEZE in the PLATON program package (Spek, 2009) which retrieved two voids at (1/2, 0, 1/2) and (1/2, 1/2, 1) (each of 180 Å3 and 42ē; total electron count per unit cell 84ē). In the final structure model, the adduct solvent molecule was treated as disordered around a center of inversion (1/2, 0, 1/2) (see Refinement section for details).

An analysis in the Cambridge Structural Database (CSD; Version 5.27, release February 2009; Allen, 2002) reveals only 4 structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type (4 independent fragments): trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti, (III), (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi, (IV), (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi, (V), (Enders et al., 1997); and trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi, (VI), (Enders et al., 1996).

All complexes of question exhibit one and the same structural motif. They are mononuclear complexes, with the coordination environment of the Ti-atoms being a distorted square pyramid (assuming Cp-rings occupy one coordination site; "four-leg piano stool"). Contents of the unit cells are presented by pairs of enantiomorphic conformers connected by inversion symmetry operations. In all complexes under discussion, ligating N-atoms are linked to Cp-groups with a C2 [(IV)-(VI)] or C3 [(I) and (III)] bridges. Noteworthy, that no structurally characterized complexes of type η5-CpTiCl3-NRn with a non-linked to Cp NRn functionality are known at the moment.

Compounds (I) and (III) represent a pair of the "closest relatives", and, despite of the evident differences in their chemical structure (CPh2 against CMe2 and NMe against NSiMe3), the geometrical parameters of the coordination environment of the Ti-atoms and imidazole rings nearly match (see Table 1). This is the same for the torsion angles in the bridge [C4—C5—C11—C12 and C1—C4—C5—C11 in (I) and the related angles in (III); compare –136.8 (3) and 64.3 (3)° in (I) with –135.21 (4) and 61.22 (5)° in (III)]. However, while in the main molecule of (I), the Ti-, Si- and CH2-group carbon atoms deviate only slightly from the imidazole ring r. m. s. plane [PL2; by 0.022 (5), 0.133 (4) and 0.094 (5) Å, respectively], the Ti-atom in (III) noticeably deviates from the imidazole r. m. s. plane (by 0.608 Å) what could be, at the first glance, explained by a mutual repulsion of the spatially adjacent imidazole and phenyl rings. Another difference in the crystal structures of (I) and (III) is due to the presence of a bulky SiMe3 group in (I). These groups are stretched outwards of the main molecule and "pump up" the unit cell volume [compare V = 2205.2 (4) Å3 in (I) with 2098.8, 1304.8, 1567.9, and 1749.9 Å3 in (III)-(VI), respectively] what causes appearance of voids suitable for THF molecules.

Elongation of the bridge from C2 [in (IV)-(VI)] to C3 [in (I) and (III)] has a little effect on the Ti1—PL1 (or Cpcent; PL1 and Cpcent denote r.m.s. plane and centroid of the Cp-ring, respectively) distances, as well as on the angle Cl2–Ti1–Cpcent and "cis-angles" Cl2–Ti1–Cl1, Cl2–Ti1–Cl3, Cl1–Ti1–N2, and Cl3–Ti1–N2. However, the angles N2–Ti1–Cpcent in (I) and (III) are expanded by approximately 10° compared to those in (IV)-(VI) while the "trans-angle" Cl2–Ti1–N2 is tightened by the same value. The angles Cl1–Ti1–Cpcent and Cl3–Ti1–Cpcent in (I) and (III) are decreased by approximately 5° comparatively to those in (IV)-(VI) while the "trans-angle" Cl1–Ti1–Cl3 is increased by approximately 10°.

Related literature top

For a description of cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), see: Krut'ko et al. (2006); Nie et al. (2008). For the geometric parameters of structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type, see: trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi (Enders et al., 1997); trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi (Enders et al., 1996). For the preparation of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, see: Wang et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All operations were performed in all-sealed evacuated glass vessels with application of the high-vacuum line (the residual pressure of non-condensible gases within 1.5–1.0×10 -3 Torr range, 1 Torr = 133.322 Pa). Complex (II) was prepared as described in our earlier work (Wang et al., 2009). THF and THF-d8 were kept with disodium benzophenone ketyl and transferred into reaction vessels and/or NMR tubes on the high-vacuum line by trapping the vapour with liq. N2. Chlorotrimethylsilane was refluxed with and kept over CaH2 and transferred into reaction vessels in a similar way. — NMR spectra were recorded on Varian INOVA-400 instrument. For 13C{1H}and 1H NMR spectra, the 13C and residual proton resonance of the d-solvent [δH = 1.73 and δC = 25.3 (THF-d8)] were used as internal reference standards.

Complex (I): To a solution of (II) (0.282 g, 0.75 mmol) in THF (20 ml), an excess of Me3SiCl (0.6 ml, 4.71 mmol) was added at approx. 253 K. An immediate precipitation of a yellow fine-crystalline solid occurred. The reaction mixture was then heated at 353 K until all the solid dissolved, the volume was reduced two times and the mother liquor was allowed to cool gradually along with the water bath down to ambient temperature. On the walls of the reaction vessel well formed bright-orange crystals grew. The orange mother liquor was removed from the crystals by decantation, the solid was rinsed once with cold (253 K) THF and the crystals were quickly dried by trapping all volatiles with liquid N2. Yield 0.275 g (82%). — 1H NMR (THF-d8, 296 K): δ = 0.58 [s, 9 H, Si(CH3)3], 1.30 [s, 6 H, C(CH3)2], 1.78 (m, 2 H, 3- and 4-CH2 in THF), 3.25 (s, CH2), 3.62 (broadened m, 2 H, 2- and 5-CH2 in THF), 6.91 (broadened m, 4 H, C5H4), 6.95, 7.52 (both broadened d, 1 H + 1 H, 3JHH = 2.3 Hz, CH in imidazole). — 13C{1H} NMR (THF-d8, 296 K): δ = 0.09 [Si(CH3)3], 28.81 (C(CH3)2), 36.11 (CH2), 41.72 [C(CH3)2], 119.99, 131.05 (CH in imidazole), 122.71, 124.49 (CH in C5H4, double intensity), 145.72 (C in C5H4), 149.73 (C in imidazole). — Admixture of (VII): 1H NMR (THF-d8, 296 K): δ = 1.26 [s, 6 H, C(CH3)2], 3.15 (s, CH2), 6.87, 6.92 (both broadened virt. t, 4 H, 3 + 4JHH =2.7 Hz, C5H4), 6.96, 7.48 (both broadened unresolved d, 1 H + 1 H, CH in imidazole). — Admixture of Me3SiCl: 1H NMR (THF-d8, 296 K): δ = 0.41 [s, 9 H, Si(CH3)3]. — 13C{1H} NMR (THF-d8, 296 K): δ = 3.10 [Si(CH3)3]. Content of complex (VII) and Me3SiCl in the reaction mixture is 16% (mol.) Low concentration of (VII) made its signals in 13C{1H} NMR spectrum of the equilibrium mixture invisible.

Single crystal of I suitable for X-ray diffraction analysis were picked up directly from the isolated materials (N2-filled glove-box) and mounted inside a Lindemann glass capillary (diameter 0.5 mm).

Refinement top

The non-H atoms were refined anisotropically. The H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively. The THF molecule is disordered around inversion center (1/2, 0, 1/2) and was treated with a "PART -1" instruction and sof constrained to 0.5. O—C, (O)C—C, C—C 1,2-distances and corresponding 1,3-distances were restrained to 1.421 (6), 1.482 (6), 1.498 (6) and 2.329 (10), 2.344 (10), 2.302 (10) Å, respectively [DFIX instructions; distance values and their standard uncertainties (su-s) were chosen on the basis of the statistical analysis of the CSD (Version 5.27, release February 2009; Allen, 2002) for non-disordered solvent THF molecules (Rmax = 5.0; 70 hits and 99 fragments; 61 fragments used for statistical analysis on rejecting hits with pathological fragments)]. Non-hydrogen atoms of the disordered THF molecule were restrained to behave approximately isotropically with su 0.01 Å2 (ISOR instruction). The anisotropic displacement parameters (ADP-s) for these atoms were restrained to be the same with su of 0.01 Å2 (SIMU instruction).

Structure description top

Cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), (A), based on them were described not long ago (Krut'ko et al., 2006; Nie et al., 2008). All Ti and Zr complexes reported in these papers possess Me-groups at the N1 atoms and were prepared by reactions of metal tetrachlorides with monolithium- or trimethylsilyl-derivatives of parent cyclopentadienes. Recently a synthetic approach to η5-Cp-tris(sec-amido)TiIV type complexes of general formula [η5-Cp-(C1 or 2-link)-imidazolyl-κN1]-MIV(NEt2)2, (B), was suggested (Wang et al., 2009). Here we report on the crystal structure of trichloro{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1-trimethylsilyl-1H-imidazole-κN3}titanium(IV) that crystallizes as an 1:0.5 adduct with tetrahydrofuran (THF) (I), which was prepared by a reaction with chlorotrimethylsilane via a facile (B) to (A) conversion method. The molecular structure of (I) is discussed in comparison with those of its few known analogues.

Complex (I) was prepared by treatment of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, (II), with excess of Me3SiCl in a THF medium at elevated temperature (see Fig. 2 and Experimental for details). The presence of THF in the crystal and the adduct ratio were not evident in the structure solution and refinement stages but were independently supported by 1H NMR spectroscopy data [multiplets at δ(H) 1.78 and 3.62 p.p.m. with both of the relative integral intensities corresponding to 2 H]. The THF molecule was found and located using SQUEEZE in the PLATON program package (Spek, 2009) which retrieved two voids at (1/2, 0, 1/2) and (1/2, 1/2, 1) (each of 180 Å3 and 42ē; total electron count per unit cell 84ē). In the final structure model, the adduct solvent molecule was treated as disordered around a center of inversion (1/2, 0, 1/2) (see Refinement section for details).

An analysis in the Cambridge Structural Database (CSD; Version 5.27, release February 2009; Allen, 2002) reveals only 4 structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type (4 independent fragments): trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti, (III), (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi, (IV), (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi, (V), (Enders et al., 1997); and trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi, (VI), (Enders et al., 1996).

All complexes of question exhibit one and the same structural motif. They are mononuclear complexes, with the coordination environment of the Ti-atoms being a distorted square pyramid (assuming Cp-rings occupy one coordination site; "four-leg piano stool"). Contents of the unit cells are presented by pairs of enantiomorphic conformers connected by inversion symmetry operations. In all complexes under discussion, ligating N-atoms are linked to Cp-groups with a C2 [(IV)-(VI)] or C3 [(I) and (III)] bridges. Noteworthy, that no structurally characterized complexes of type η5-CpTiCl3-NRn with a non-linked to Cp NRn functionality are known at the moment.

Compounds (I) and (III) represent a pair of the "closest relatives", and, despite of the evident differences in their chemical structure (CPh2 against CMe2 and NMe against NSiMe3), the geometrical parameters of the coordination environment of the Ti-atoms and imidazole rings nearly match (see Table 1). This is the same for the torsion angles in the bridge [C4—C5—C11—C12 and C1—C4—C5—C11 in (I) and the related angles in (III); compare –136.8 (3) and 64.3 (3)° in (I) with –135.21 (4) and 61.22 (5)° in (III)]. However, while in the main molecule of (I), the Ti-, Si- and CH2-group carbon atoms deviate only slightly from the imidazole ring r. m. s. plane [PL2; by 0.022 (5), 0.133 (4) and 0.094 (5) Å, respectively], the Ti-atom in (III) noticeably deviates from the imidazole r. m. s. plane (by 0.608 Å) what could be, at the first glance, explained by a mutual repulsion of the spatially adjacent imidazole and phenyl rings. Another difference in the crystal structures of (I) and (III) is due to the presence of a bulky SiMe3 group in (I). These groups are stretched outwards of the main molecule and "pump up" the unit cell volume [compare V = 2205.2 (4) Å3 in (I) with 2098.8, 1304.8, 1567.9, and 1749.9 Å3 in (III)-(VI), respectively] what causes appearance of voids suitable for THF molecules.

Elongation of the bridge from C2 [in (IV)-(VI)] to C3 [in (I) and (III)] has a little effect on the Ti1—PL1 (or Cpcent; PL1 and Cpcent denote r.m.s. plane and centroid of the Cp-ring, respectively) distances, as well as on the angle Cl2–Ti1–Cpcent and "cis-angles" Cl2–Ti1–Cl1, Cl2–Ti1–Cl3, Cl1–Ti1–N2, and Cl3–Ti1–N2. However, the angles N2–Ti1–Cpcent in (I) and (III) are expanded by approximately 10° compared to those in (IV)-(VI) while the "trans-angle" Cl2–Ti1–N2 is tightened by the same value. The angles Cl1–Ti1–Cpcent and Cl3–Ti1–Cpcent in (I) and (III) are decreased by approximately 5° comparatively to those in (IV)-(VI) while the "trans-angle" Cl1–Ti1–Cl3 is increased by approximately 10°.

For a description of cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), see: Krut'ko et al. (2006); Nie et al. (2008). For the geometric parameters of structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type, see: trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi (Enders et al., 1997); trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi (Enders et al., 1996). For the preparation of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, see: Wang et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound (I) with labelling and thermal ellipsoids drawn at the 50% probability level. H-atoms are omitted for clarity.
[Figure 2] Fig. 2. The formation of the title compound.
Trichlorido{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1-trimethylsilyl- 1H-imidazole-κN3}titanium(IV) tetrahydrofuran hemisolvate top
Crystal data top
[Ti(C15H23N2Si)Cl3]·0.5C4H8OF(000) = 936
Mr = 449.75Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2833 reflections
a = 8.8033 (9) Åθ = 2.6–24.1°
b = 11.8201 (11) ŵ = 0.81 mm1
c = 21.481 (2) ÅT = 293 K
β = 99.399 (1)°Block, orange
V = 2205.2 (4) Å30.29 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3869 independent reflections
Radiation source: fine-focus sealed tube2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 1.9°
phi and ω scansh = 106
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.798, Tmax = 0.894l = 2425
10736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
3869 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.42 e Å3
70 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ti(C15H23N2Si)Cl3]·0.5C4H8OV = 2205.2 (4) Å3
Mr = 449.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8033 (9) ŵ = 0.81 mm1
b = 11.8201 (11) ÅT = 293 K
c = 21.481 (2) Å0.29 × 0.21 × 0.14 mm
β = 99.399 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
3869 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2812 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.894Rint = 0.031
10736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04070 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
3869 reflectionsΔρmin = 0.27 e Å3
249 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.43495 (6)0.55311 (4)0.32607 (2)0.03818 (17)
Cl10.38088 (10)0.37906 (7)0.37034 (4)0.0627 (3)
Cl20.67102 (10)0.47125 (8)0.31535 (5)0.0702 (3)
Cl30.57958 (10)0.71852 (7)0.35301 (4)0.0566 (2)
Si10.00773 (10)0.73534 (8)0.49770 (4)0.0542 (3)
N10.1676 (2)0.67619 (19)0.46582 (10)0.0396 (5)
N20.3202 (2)0.61390 (19)0.40069 (10)0.0391 (5)
C10.1772 (3)0.6447 (2)0.40551 (12)0.0352 (6)
C20.3137 (3)0.6600 (3)0.50049 (13)0.0491 (8)
H20.34260.67250.54350.059*
C30.4050 (3)0.6234 (3)0.46088 (13)0.0487 (8)
H30.50920.60690.47190.058*
C40.0459 (3)0.6406 (2)0.35326 (12)0.0401 (7)
H4B0.04080.67940.36630.048*
H4A0.01640.56230.34510.048*
C50.0790 (3)0.6941 (3)0.29174 (13)0.0424 (7)
C60.0695 (4)0.6866 (3)0.24248 (14)0.0637 (10)
H6B0.05650.72900.20560.096*
H6C0.15420.71720.26010.096*
H6A0.09020.60890.23110.096*
C70.1269 (4)0.8181 (3)0.30352 (16)0.0567 (8)
H7B0.21900.82160.33430.085*
H7C0.04600.85860.31880.085*
H7A0.14570.85170.26480.085*
C80.1419 (4)0.6251 (4)0.4950 (2)0.0828 (12)
H8A0.16680.59610.45280.124*
H8C0.23250.65720.50750.124*
H8B0.10430.56480.52320.124*
C90.0605 (5)0.8622 (3)0.45119 (18)0.0730 (11)
H9B0.02630.90420.44180.110*
H9C0.11930.90890.47510.110*
H9A0.12410.83960.41260.110*
C100.0866 (5)0.7784 (5)0.57934 (18)0.1059 (17)
H10A0.13310.71430.60240.159*
H10C0.00500.80710.59960.159*
H10B0.16270.83640.57850.159*
C110.2036 (3)0.6279 (3)0.26614 (12)0.0424 (7)
C120.3285 (4)0.6727 (3)0.24110 (13)0.0528 (8)
H120.35460.74890.24020.063*
C130.4073 (4)0.5834 (4)0.21778 (15)0.0704 (11)
H130.49510.58970.19910.084*
C140.3307 (5)0.4838 (4)0.22756 (16)0.0705 (11)
H140.35780.41150.21620.085*
C150.2056 (4)0.5111 (3)0.25741 (14)0.0535 (8)
H150.13560.45990.26940.064*
O10.3332 (13)0.9741 (12)0.4938 (7)0.206 (4)0.50
C210.3746 (18)1.0279 (16)0.4404 (6)0.205 (5)0.50
H21B0.30991.09350.42900.246*0.50
H21A0.36210.97630.40480.246*0.50
C220.5356 (19)1.0621 (16)0.4569 (7)0.199 (5)0.50
H22B0.54891.13920.44330.239*0.50
H22A0.60091.01290.43670.239*0.50
C230.5763 (17)1.0534 (16)0.5268 (8)0.201 (5)0.50
H23A0.66711.00670.53850.241*0.50
H23B0.59641.12770.54550.241*0.50
C240.443 (2)1.0019 (16)0.5477 (6)0.195 (5)0.50
H24A0.47410.93420.57200.234*0.50
H24B0.39841.05420.57440.234*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0335 (3)0.0417 (3)0.0402 (3)0.0018 (2)0.0084 (2)0.0042 (2)
Cl10.0673 (6)0.0486 (5)0.0696 (6)0.0078 (4)0.0033 (4)0.0064 (4)
Cl20.0459 (5)0.0750 (6)0.0929 (7)0.0117 (4)0.0209 (4)0.0205 (5)
Cl30.0591 (5)0.0518 (5)0.0609 (5)0.0144 (4)0.0157 (4)0.0023 (4)
Si10.0444 (5)0.0776 (6)0.0435 (5)0.0092 (5)0.0156 (4)0.0045 (4)
N10.0353 (13)0.0528 (14)0.0313 (12)0.0003 (11)0.0075 (10)0.0005 (10)
N20.0299 (12)0.0521 (14)0.0358 (12)0.0034 (11)0.0065 (10)0.0004 (10)
C10.0330 (15)0.0366 (14)0.0373 (15)0.0003 (11)0.0092 (11)0.0052 (11)
C20.0371 (17)0.072 (2)0.0363 (16)0.0007 (15)0.0012 (13)0.0022 (15)
C30.0305 (16)0.074 (2)0.0390 (16)0.0047 (15)0.0018 (13)0.0020 (15)
C40.0325 (15)0.0500 (17)0.0373 (15)0.0022 (13)0.0041 (12)0.0015 (13)
C50.0356 (16)0.0548 (18)0.0367 (15)0.0058 (13)0.0061 (12)0.0057 (13)
C60.0438 (18)0.105 (3)0.0392 (17)0.0132 (19)0.0028 (14)0.0103 (17)
C70.066 (2)0.0485 (18)0.059 (2)0.0106 (16)0.0195 (17)0.0141 (15)
C80.054 (2)0.104 (3)0.098 (3)0.003 (2)0.033 (2)0.024 (2)
C90.070 (2)0.064 (2)0.086 (3)0.0130 (19)0.016 (2)0.011 (2)
C100.094 (3)0.174 (5)0.052 (2)0.028 (3)0.019 (2)0.029 (3)
C110.0385 (16)0.0572 (18)0.0300 (14)0.0030 (14)0.0013 (12)0.0018 (13)
C120.054 (2)0.069 (2)0.0370 (16)0.0061 (17)0.0123 (14)0.0125 (15)
C130.062 (2)0.112 (3)0.0396 (18)0.021 (2)0.0170 (17)0.002 (2)
C140.075 (3)0.083 (3)0.049 (2)0.020 (2)0.0031 (18)0.0266 (19)
C150.0491 (19)0.059 (2)0.0475 (17)0.0001 (16)0.0070 (15)0.0126 (15)
O10.195 (6)0.228 (7)0.195 (6)0.011 (6)0.036 (5)0.014 (6)
C210.199 (7)0.212 (7)0.203 (7)0.002 (6)0.031 (6)0.017 (6)
C220.203 (7)0.199 (8)0.193 (7)0.014 (6)0.024 (6)0.008 (6)
C230.206 (7)0.199 (7)0.199 (7)0.014 (6)0.039 (6)0.005 (6)
C240.188 (7)0.211 (7)0.187 (7)0.007 (6)0.038 (6)0.011 (6)
Geometric parameters (Å, º) top
Ti1—N22.153 (2)C7—H7A0.9600
Ti1—C142.315 (3)C8—H8A0.9600
Ti1—C132.327 (3)C8—H8C0.9600
Ti1—Cl22.3377 (10)C8—H8B0.9600
Ti1—Cl12.3475 (9)C9—H9B0.9600
Ti1—C152.350 (3)C9—H9C0.9600
Ti1—Cl32.3533 (9)C9—H9A0.9600
Ti1—C122.377 (3)C10—H10A0.9600
Ti1—C112.394 (3)C10—H10C0.9600
Si1—N11.804 (2)C10—H10B0.9600
Si1—C81.847 (4)C11—C151.394 (4)
Si1—C91.847 (4)C11—C121.404 (4)
Si1—C101.849 (4)C12—C131.399 (5)
N1—C11.364 (3)C12—H120.9300
N1—C21.390 (3)C13—C141.390 (5)
N2—C11.330 (3)C13—H130.9300
N2—C31.388 (3)C14—C151.399 (5)
C1—C41.474 (4)C14—H140.9300
C2—C31.335 (4)C15—H150.9300
C2—H20.9300O1—C211.410 (6)
C3—H30.9300O1—C241.421 (6)
C4—C51.535 (4)C21—C221.460 (6)
C4—H4B0.9700C21—H21B0.9700
C4—H4A0.9700C21—H21A0.9700
C5—C111.522 (4)C22—C231.489 (6)
C5—C71.534 (4)C22—H22B0.9700
C5—C61.544 (4)C22—H22A0.9700
C6—H6B0.9600C23—C241.456 (6)
C6—H6C0.9600C23—H23A0.9700
C6—H6A0.9600C23—H23B0.9700
C7—H7B0.9600C24—H24A0.9700
C7—H7C0.9600C24—H24B0.9700
N2—Ti1—C14129.38 (12)H7B—C7—H7C109.5
N2—Ti1—C13135.04 (11)C5—C7—H7A109.5
C14—Ti1—C1334.86 (13)H7B—C7—H7A109.5
N2—Ti1—Cl2138.10 (6)H7C—C7—H7A109.5
C14—Ti1—Cl289.41 (10)Si1—C8—H8A109.5
C13—Ti1—Cl285.12 (9)Si1—C8—H8C109.5
N2—Ti1—Cl180.79 (7)H8A—C8—H8C109.5
C14—Ti1—Cl189.07 (11)Si1—C8—H8B109.5
C13—Ti1—Cl1123.02 (12)H8A—C8—H8B109.5
Cl2—Ti1—Cl185.38 (4)H8C—C8—H8B109.5
N2—Ti1—C1594.48 (10)Si1—C9—H9B109.5
C14—Ti1—C1534.89 (12)Si1—C9—H9C109.5
C13—Ti1—C1557.74 (14)H9B—C9—H9C109.5
Cl2—Ti1—C15122.49 (8)Si1—C9—H9A109.5
Cl1—Ti1—C1581.89 (9)H9B—C9—H9A109.5
N2—Ti1—Cl380.82 (7)H9C—C9—H9A109.5
C14—Ti1—Cl3129.55 (12)Si1—C10—H10A109.5
C13—Ti1—Cl394.70 (12)Si1—C10—H10C109.5
Cl2—Ti1—Cl385.07 (4)H10A—C10—H10C109.5
Cl1—Ti1—Cl3139.98 (4)Si1—C10—H10B109.5
C15—Ti1—Cl3134.78 (9)H10A—C10—H10B109.5
N2—Ti1—C12101.49 (10)H10C—C10—H10B109.5
C14—Ti1—C1257.36 (13)C15—C11—C12107.1 (3)
C13—Ti1—C1234.59 (12)C15—C11—C5125.7 (3)
Cl2—Ti1—C12114.57 (8)C12—C11—C5126.9 (3)
Cl1—Ti1—C12138.74 (9)C15—C11—Ti171.21 (16)
C15—Ti1—C1256.85 (12)C12—C11—Ti172.22 (17)
Cl3—Ti1—C1279.88 (9)C5—C11—Ti1126.58 (18)
N2—Ti1—C1179.37 (9)C13—C12—C11108.5 (3)
C14—Ti1—C1157.56 (11)C13—C12—Ti170.76 (19)
C13—Ti1—C1157.62 (11)C11—C12—Ti173.55 (16)
Cl2—Ti1—C11142.36 (7)C13—C12—H12125.7
Cl1—Ti1—C11109.31 (8)C11—C12—H12125.7
C15—Ti1—C1134.16 (10)Ti1—C12—H12121.6
Cl3—Ti1—C11101.76 (8)C14—C13—C12107.7 (3)
C12—Ti1—C1134.23 (10)C14—C13—Ti172.1 (2)
N1—Si1—C8108.14 (16)C12—C13—Ti174.65 (18)
N1—Si1—C9108.33 (15)C14—C13—H13126.2
C8—Si1—C9112.84 (18)C12—C13—H13126.2
N1—Si1—C10105.75 (16)Ti1—C13—H13119.0
C8—Si1—C10112.3 (2)C13—C14—C15108.1 (3)
C9—Si1—C10109.1 (2)C13—C14—Ti173.0 (2)
C1—N1—C2106.0 (2)C15—C14—Ti173.94 (17)
C1—N1—Si1129.77 (19)C13—C14—H14125.9
C2—N1—Si1124.11 (19)C15—C14—H14125.9
C1—N2—C3106.1 (2)Ti1—C14—H14118.9
C1—N2—Ti1135.58 (18)C11—C15—C14108.6 (3)
C3—N2—Ti1118.30 (18)C11—C15—Ti174.63 (16)
N2—C1—N1110.8 (2)C14—C15—Ti171.16 (19)
N2—C1—C4124.5 (2)C11—C15—H15125.7
N1—C1—C4124.7 (2)C14—C15—H15125.7
C3—C2—N1107.7 (2)Ti1—C15—H15120.2
C3—C2—H2126.2C21—O1—C24109.0 (5)
N1—C2—H2126.2O1—C21—C22107.3 (5)
C2—C3—N2109.4 (2)O1—C21—H21B110.3
C2—C3—H3125.3C22—C21—H21B110.3
N2—C3—H3125.3O1—C21—H21A110.3
C1—C4—C5114.0 (2)C22—C21—H21A110.3
C1—C4—H4B108.8H21B—C21—H21A108.5
C5—C4—H4B108.8C21—C22—C23106.8 (5)
C1—C4—H4A108.8C21—C22—H22B110.4
C5—C4—H4A108.8C23—C22—H22B110.4
H4B—C4—H4A107.7C21—C22—H22A110.4
C11—C5—C7110.8 (2)C23—C22—H22A110.4
C11—C5—C4110.4 (2)H22B—C22—H22A108.6
C7—C5—C4109.7 (2)C24—C23—C22105.4 (5)
C11—C5—C6107.6 (2)C24—C23—H23A110.7
C7—C5—C6110.3 (3)C22—C23—H23A110.7
C4—C5—C6107.9 (2)C24—C23—H23B110.7
C5—C6—H6B109.5C22—C23—H23B110.7
C5—C6—H6C109.5H23A—C23—H23B108.8
H6B—C6—H6C109.5O1—C24—C23108.8 (5)
C5—C6—H6A109.5O1—C24—H24A109.9
H6B—C6—H6A109.5C23—C24—H24A109.9
H6C—C6—H6A109.5O1—C24—H24B109.9
C5—C7—H7B109.5C23—C24—H24B109.9
C5—C7—H7C109.5H24A—C24—H24B108.3
C8—Si1—N1—C168.5 (3)N2—Ti1—C12—C13167.7 (2)
C9—Si1—N1—C154.1 (3)C14—Ti1—C12—C1338.0 (2)
C10—Si1—N1—C1171.0 (3)Cl2—Ti1—C12—C1334.1 (3)
C8—Si1—N1—C2115.4 (3)Cl1—Ti1—C12—C1378.6 (3)
C9—Si1—N1—C2121.9 (3)C15—Ti1—C12—C1379.9 (3)
C10—Si1—N1—C25.1 (3)Cl3—Ti1—C12—C13113.9 (2)
C14—Ti1—N2—C114.3 (3)C11—Ti1—C12—C13117.0 (3)
C13—Ti1—N2—C132.8 (3)N2—Ti1—C12—C1150.70 (19)
Cl2—Ti1—N2—C1167.8 (2)C14—Ti1—C12—C1179.0 (2)
Cl1—Ti1—N2—C195.4 (3)C13—Ti1—C12—C11117.0 (3)
C15—Ti1—N2—C114.4 (3)Cl2—Ti1—C12—C11151.15 (15)
Cl3—Ti1—N2—C1120.3 (3)Cl1—Ti1—C12—C1138.4 (2)
C12—Ti1—N2—C142.7 (3)C15—Ti1—C12—C1137.15 (17)
C11—Ti1—N2—C116.4 (3)Cl3—Ti1—C12—C11129.07 (18)
C14—Ti1—N2—C3163.4 (2)C11—C12—C13—C140.7 (4)
C13—Ti1—N2—C3149.5 (2)Ti1—C12—C13—C1465.0 (2)
Cl2—Ti1—N2—C39.9 (3)C11—C12—C13—Ti164.3 (2)
Cl1—Ti1—N2—C382.3 (2)N2—Ti1—C13—C1497.7 (3)
C15—Ti1—N2—C3163.3 (2)Cl2—Ti1—C13—C1496.0 (2)
Cl3—Ti1—N2—C362.0 (2)Cl1—Ti1—C13—C1414.7 (3)
C12—Ti1—N2—C3139.6 (2)C15—Ti1—C13—C1437.7 (2)
C11—Ti1—N2—C3165.9 (2)Cl3—Ti1—C13—C14179.4 (2)
C3—N2—C1—N11.5 (3)C12—Ti1—C13—C14114.8 (3)
Ti1—N2—C1—N1179.43 (18)C11—Ti1—C13—C1478.4 (2)
C3—N2—C1—C4176.1 (3)N2—Ti1—C13—C1217.2 (3)
Ti1—N2—C1—C41.8 (4)C14—Ti1—C13—C12114.8 (3)
C2—N1—C1—N22.0 (3)Cl2—Ti1—C13—C12149.2 (2)
Si1—N1—C1—N2174.59 (19)Cl1—Ti1—C13—C12129.5 (2)
C2—N1—C1—C4175.6 (3)C15—Ti1—C13—C1277.1 (2)
Si1—N1—C1—C47.8 (4)Cl3—Ti1—C13—C1264.6 (2)
C1—N1—C2—C31.7 (3)C11—Ti1—C13—C1236.4 (2)
Si1—N1—C2—C3175.2 (2)C12—C13—C14—C150.6 (4)
N1—C2—C3—N20.8 (4)Ti1—C13—C14—C1566.2 (2)
C1—N2—C3—C20.4 (3)C12—C13—C14—Ti166.7 (2)
Ti1—N2—C3—C2178.8 (2)N2—Ti1—C14—C13115.0 (2)
N2—C1—C4—C548.5 (4)Cl2—Ti1—C14—C1382.3 (2)
N1—C1—C4—C5134.2 (3)Cl1—Ti1—C14—C13167.7 (2)
C1—C4—C5—C1164.3 (3)C15—Ti1—C14—C13115.2 (3)
C1—C4—C5—C758.2 (3)Cl3—Ti1—C14—C130.8 (3)
C1—C4—C5—C6178.4 (2)C12—Ti1—C14—C1337.7 (2)
C7—C5—C11—C15171.9 (3)C11—Ti1—C14—C1378.6 (2)
C4—C5—C11—C1550.2 (4)N2—Ti1—C14—C150.2 (3)
C6—C5—C11—C1567.4 (4)C13—Ti1—C14—C15115.2 (3)
C7—C5—C11—C1215.0 (4)Cl2—Ti1—C14—C15162.5 (2)
C4—C5—C11—C12136.8 (3)Cl1—Ti1—C14—C1577.1 (2)
C6—C5—C11—C12105.7 (3)Cl3—Ti1—C14—C15114.4 (2)
C7—C5—C11—Ti179.7 (3)C12—Ti1—C14—C1577.5 (2)
C4—C5—C11—Ti142.1 (3)C11—Ti1—C14—C1536.6 (2)
C6—C5—C11—Ti1159.6 (2)C12—C11—C15—C140.2 (3)
N2—Ti1—C11—C15114.7 (2)C5—C11—C15—C14174.4 (3)
C14—Ti1—C11—C1537.4 (2)Ti1—C11—C15—C1463.5 (2)
C13—Ti1—C11—C1579.0 (2)C12—C11—C15—Ti163.77 (19)
Cl2—Ti1—C11—C1569.8 (2)C5—C11—C15—Ti1122.1 (3)
Cl1—Ti1—C11—C1538.5 (2)C13—C14—C15—C110.2 (4)
Cl3—Ti1—C11—C15167.10 (18)Ti1—C14—C15—C1165.8 (2)
C12—Ti1—C11—C15115.8 (3)C13—C14—C15—Ti165.6 (2)
N2—Ti1—C11—C12129.50 (19)N2—Ti1—C15—C1163.58 (19)
C14—Ti1—C11—C1278.4 (2)C14—Ti1—C15—C11116.3 (3)
C13—Ti1—C11—C1236.8 (2)C13—Ti1—C15—C1178.6 (2)
Cl2—Ti1—C11—C1245.9 (2)Cl2—Ti1—C15—C11137.18 (15)
Cl1—Ti1—C11—C12154.28 (17)Cl1—Ti1—C15—C11143.60 (18)
C15—Ti1—C11—C12115.8 (3)Cl3—Ti1—C15—C1117.9 (2)
Cl3—Ti1—C11—C1251.32 (19)C12—Ti1—C15—C1137.23 (17)
N2—Ti1—C11—C56.3 (2)N2—Ti1—C15—C14179.9 (2)
C14—Ti1—C11—C5158.4 (3)C13—Ti1—C15—C1437.7 (2)
C13—Ti1—C11—C5160.0 (3)Cl2—Ti1—C15—C1420.9 (3)
Cl2—Ti1—C11—C5169.14 (18)Cl1—Ti1—C15—C14100.1 (2)
Cl1—Ti1—C11—C582.5 (2)Cl3—Ti1—C15—C1498.4 (2)
C15—Ti1—C11—C5121.0 (3)C12—Ti1—C15—C1479.1 (2)
Cl3—Ti1—C11—C571.9 (2)C11—Ti1—C15—C14116.3 (3)
C12—Ti1—C11—C5123.2 (3)C24—O1—C21—C2217 (2)
C15—C11—C12—C130.6 (3)O1—C21—C22—C2314 (2)
C5—C11—C12—C13174.7 (3)C21—C22—C23—C246 (2)
Ti1—C11—C12—C1362.5 (2)C21—O1—C24—C2313 (2)
C15—C11—C12—Ti163.10 (19)C22—C23—C24—O14 (2)
C5—C11—C12—Ti1122.8 (3)

Experimental details

Crystal data
Chemical formula[Ti(C15H23N2Si)Cl3]·0.5C4H8O
Mr449.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8033 (9), 11.8201 (11), 21.481 (2)
β (°) 99.399 (1)
V3)2205.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.29 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
10736, 3869, 2812
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.02
No. of reflections3869
No. of parameters249
No. of restraints70
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Geometrical parameters (Å, °) of the environment of the Ti atom in the title compound compared with those of related structures top
(I)(III)(IV)(V)(VI)
Ti1—N22.153 (2)2.163 (2)2.357 (1)2.274 (4)2.261 (2)
Ti1—Cl12.3475 (9)2.3513 (8)2.3217 (4)2.322 (2)2.331 (1)
Ti1—Cl22.3377 (10)2.3486 (8)2.3729 (5)2.326 (2)2.338 (1)
Ti1—Cl32.3533 (9)2.3340 (8)2.2895 (5)2.300 (2)2.307 (1)
Ti1···Cpcent2.030 (1)2.0362.0252.0352.047
Ti1···PL12.029 (1)2.034 (1)2.0252.0342.046
Ti1···PL20.022 (5)0.6080.1750.215
N2—Ti1···Cpcent111.2 (1)a110.2099.66101.44101.64
Cl1—Ti1···Cpcent109.2 (1)a110.08116.37116.68113.90
Cl2—Ti1···Cpcent110.69 (9)a109.75107.63109.28109.73
Cl3—Ti1···Cpcent110.58 (9)a110.93114.71113.76115.56
Cl1—Ti1—N280.79 (7)79.24 (6)82.57 (2)78.6480.32
Cl2—Ti1—N2138.10 (6)140.05 (6)152.70 (3)149.27148.63
Cl3—Ti1—N280.82 (7)81.19 (6)83.45 (2)80.2378.94
Cl2—Ti1—Cl185.38 (4)86.06 (3)85.18 (2)87.8487.14
Cl2—Ti1—Cl385.07 (4)86.01 (3)85.30 (2)86.9587.20
Cl3—Ti1—Cl1139.98 (4)138.52 (3)128.55 (2)128.07129.12
PL1–PL281.0 (1)78.33582.49185.895
Notes: (a) the angle between the Ti1—N2 bond and the normal to PL1; (I) this work; (III) Krut'ko et al. (2006); (IV) Herrmann et al. (1995); (V) Enders et al. (1997); (VI) Enders et al. (1996). PL1 and Cpcent denote the C11–C15 Cp ring r.m.s. plane and centroid, respectively, while PL2 denotes an r.m.s. plane through the non-H atoms of a heterocyclic ring.
 

Footnotes

Part of the 2010 Master Degree thesis, North-West University of Xi'an, People's Republic of China.

Acknowledgements

Financial support from the National Natural Science Foundation of China (project No. 20702041), Shaanxi Provincial Department of Education (grant Nos. 09 J K733 and 07 J K393), Shaanxi Administration of Foreign Expert Affairs (grant No. 20096100097) and Shaanxi Provincial Department of Science and Technology (grant No. 2007B05) is gratefully acknowledged. The authors are grateful to Mr Sun Wei for his help in measuring the NMR spectra.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnders, M., Rudolph, R. & Pritzkow, H. (1996). Chem. Ber. 129, 459–463.  CrossRef CAS Web of Science Google Scholar
First citationEnders, M., Rudolph, R. & Pritzkow, H. (1997). J. Organomet. Chem. 549, 251–256.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerrmann, W. A., Morawietz, M. J. A., Priermeier, T. & Mashima, K. (1995). J. Organomet. Chem. 486, 291–295.  CSD CrossRef CAS Web of Science Google Scholar
First citationKrut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574–1580.  CAS Google Scholar
First citationNie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355–2368.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255–m259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds