organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N-(2,3-di­chloro­phen­yl)succinamate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 April 2010; accepted 22 April 2010; online 28 April 2010)

The asymmetric unit of the title compound, C11H11Cl2NO3, contains two independent mol­ecules. In both the molecules, the H atoms of the adjacent –CH2 groups of the acid segments orient themselves away from the amide O and the carbonyl O atoms. The C=O and O—CH3 bonds of the ester group are in syn positions with respect to each other. In the crystal, the mol­ecules are linked into infinite chains through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o3064.],b[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o388.]); Saraswathi et al. (2010[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o387.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11Cl2NO3

  • Mr = 276.11

  • Triclinic, [P \overline 1]

  • a = 4.7356 (5) Å

  • b = 15.868 (1) Å

  • c = 17.158 (2) Å

  • α = 80.748 (8)°

  • β = 88.869 (8)°

  • γ = 82.350 (8)°

  • V = 1261.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 299 K

  • 0.30 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.862, Tmax = 0.970

  • 8311 measured reflections

  • 4564 independent reflections

  • 3398 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.101

  • S = 1.16

  • 4564 reflections

  • 313 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.08 (1) 2.899 (3) 162 (3)
N2—H2N⋯O4ii 0.86 (1) 2.06 (2) 2.880 (3) 159 (3)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Gowda et al., 2009a,b; Saraswathi et al., 2010). the crystal structure of N-(3,4-dichlorophenyl)methylsuccinamate (I), systematic name: 3-[(3,4-dichloro)-aminocarbonyl]propionate has been determined. The asymmetric unit of the structure contains 2 independent molecules. The conformations of N—H and C=O bonds in the amide segments of the structure are anti to each other. Further, the conformation of the amide O atom and the carbonyl O atom of the ester segment are anti to the H atoms attached to the adjacent C atoms (Fig.1), similar to that observed in N-(3,5-dichlorophenyl)-methylsuccinamate (Saraswathi et al., 2010) and N-(4-chlorophenyl)-methylsuccinamate (Gowda et al., 2009b). The C=O and O–CH2 bonds of the ester group are in syn position to each other. The N—H···O intermolecular hydrogen bonds pack the mpolecules into infinite chains in the structure (Table 1, Fig.2).

Related literature top

For related structures, see: Gowda et al. (2009a,b); Saraswathi et al. (2010).

Experimental top

The solution of succinic anhydride (0.02 mol) in toluene (25 ml) was treated dropwise with the solution of 3,4-dichloroaniline (0.02 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dichloroaniline. The resultant solid N-(3,4-dichlorophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from methanol. Pure N-(3,4-dichlorophenyl)succinamic acid in methanol was refluxed with 2 ml of conc. sulfuric acid for two hours and was subjected to slow evaporation. The resulting N-(3,4-dichlorophenyl)methylsuccinamate was recrystallised from methanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Needle like colourless single crystals used in X-ray diffraction studies were grown in methanol solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and their position refined with N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The Uij components of C11 and C22 were restrained to approximate isotropic behavoir.

Structure description top

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Gowda et al., 2009a,b; Saraswathi et al., 2010). the crystal structure of N-(3,4-dichlorophenyl)methylsuccinamate (I), systematic name: 3-[(3,4-dichloro)-aminocarbonyl]propionate has been determined. The asymmetric unit of the structure contains 2 independent molecules. The conformations of N—H and C=O bonds in the amide segments of the structure are anti to each other. Further, the conformation of the amide O atom and the carbonyl O atom of the ester segment are anti to the H atoms attached to the adjacent C atoms (Fig.1), similar to that observed in N-(3,5-dichlorophenyl)-methylsuccinamate (Saraswathi et al., 2010) and N-(4-chlorophenyl)-methylsuccinamate (Gowda et al., 2009b). The C=O and O–CH2 bonds of the ester group are in syn position to each other. The N—H···O intermolecular hydrogen bonds pack the mpolecules into infinite chains in the structure (Table 1, Fig.2).

For related structures, see: Gowda et al. (2009a,b); Saraswathi et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Methyl N-(2,3-dichlorophenyl)succinamate top
Crystal data top
C11H11Cl2NO3Z = 4
Mr = 276.11F(000) = 568
Triclinic, P1Dx = 1.454 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7356 (5) ÅCell parameters from 3119 reflections
b = 15.868 (1) Åθ = 2.5–27.9°
c = 17.158 (2) ŵ = 0.51 mm1
α = 80.748 (8)°T = 299 K
β = 88.869 (8)°Needle, colourless
γ = 82.350 (8)°0.30 × 0.12 × 0.06 mm
V = 1261.2 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4564 independent reflections
Radiation source: fine-focus sealed tube3398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Rotation method data acquisition using ω and φ scansθmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 54
Tmin = 0.862, Tmax = 0.970k = 1819
8311 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0142P)2 + 1.3931P]
where P = (Fo2 + 2Fc2)/3
4564 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.26 e Å3
14 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H11Cl2NO3γ = 82.350 (8)°
Mr = 276.11V = 1261.2 (2) Å3
Triclinic, P1Z = 4
a = 4.7356 (5) ÅMo Kα radiation
b = 15.868 (1) ŵ = 0.51 mm1
c = 17.158 (2) ÅT = 299 K
α = 80.748 (8)°0.30 × 0.12 × 0.06 mm
β = 88.869 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4564 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3398 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.970Rint = 0.019
8311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05414 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.26 e Å3
4564 reflectionsΔρmin = 0.25 e Å3
313 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00812 (19)0.02952 (6)0.23112 (5)0.0573 (3)
Cl20.1692 (2)0.01708 (6)0.40431 (5)0.0666 (3)
O10.6129 (5)0.1051 (2)0.04979 (15)0.0817 (9)
O20.3278 (7)0.2834 (2)0.0451 (2)0.0989 (11)
O30.6122 (6)0.27365 (19)0.14800 (15)0.0789 (9)
N10.1836 (5)0.10541 (19)0.10772 (16)0.0474 (7)
H1N0.008 (3)0.101 (2)0.1013 (19)0.057*
C10.2772 (6)0.1062 (2)0.18535 (19)0.0406 (7)
C20.1959 (6)0.04796 (19)0.24829 (18)0.0375 (7)
C30.2808 (7)0.0521 (2)0.32437 (18)0.0433 (8)
C40.4535 (7)0.1112 (2)0.3378 (2)0.0543 (9)
H40.51300.11290.38880.065*
C50.5375 (7)0.1676 (2)0.2755 (2)0.0580 (10)
H50.65640.20720.28450.070*
C60.4491 (7)0.1667 (2)0.1997 (2)0.0501 (9)
H60.50400.20650.15820.060*
C70.3556 (7)0.1087 (2)0.04437 (19)0.0503 (9)
C80.2087 (7)0.1151 (3)0.03415 (19)0.0586 (10)
H8A0.02460.15000.03330.070*
H8B0.17660.05800.04230.070*
C90.3833 (7)0.1545 (2)0.10209 (19)0.0546 (9)
H9A0.56530.11870.10380.065*
H9B0.28460.15590.15140.065*
C100.4338 (8)0.2446 (3)0.0942 (2)0.0581 (10)
C110.6685 (11)0.3620 (3)0.1463 (3)0.0965 (16)
H11A0.49310.40040.15360.116*
H11B0.79860.37840.18790.116*
H11C0.75060.36510.09630.116*
Cl31.3412 (2)0.60860 (6)0.49659 (5)0.0574 (3)
Cl41.0827 (3)0.78824 (7)0.53909 (6)0.0770 (3)
O40.7056 (4)0.51729 (14)0.32203 (15)0.0534 (6)
O51.0323 (8)0.4666 (2)0.15611 (19)0.1093 (12)
O60.7887 (8)0.3579 (2)0.15546 (19)0.1027 (11)
N21.1105 (5)0.56608 (16)0.35184 (15)0.0382 (6)
H2N1.293 (2)0.5544 (19)0.3550 (18)0.046*
C120.9873 (6)0.64607 (18)0.37103 (17)0.0344 (7)
C131.0824 (6)0.67383 (19)0.43758 (17)0.0362 (7)
C140.9662 (7)0.7527 (2)0.45638 (19)0.0459 (8)
C150.7541 (8)0.8036 (2)0.4107 (2)0.0570 (10)
H150.67540.85630.42390.068*
C160.6598 (8)0.7758 (2)0.3453 (2)0.0591 (10)
H160.51580.81000.31430.071*
C170.7756 (7)0.6981 (2)0.3251 (2)0.0482 (8)
H170.71110.68040.28020.058*
C180.9643 (6)0.5063 (2)0.33015 (17)0.0368 (7)
C191.1431 (6)0.4234 (2)0.3189 (2)0.0484 (9)
H19A1.20060.39100.37030.058*
H19B1.31430.43660.29020.058*
C200.9884 (7)0.3681 (2)0.2746 (2)0.0492 (9)
H20A1.09700.31120.27900.059*
H20B0.80450.36180.29920.059*
C210.9442 (8)0.4044 (3)0.1895 (2)0.0625 (10)
C220.7374 (15)0.3858 (4)0.0715 (3)0.146 (2)
H22A0.91620.38610.04410.175*
H22B0.63400.44280.06300.175*
H22C0.62810.34700.05170.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0583 (6)0.0585 (6)0.0607 (6)0.0252 (4)0.0038 (4)0.0126 (4)
Cl20.0767 (7)0.0689 (6)0.0473 (5)0.0011 (5)0.0032 (5)0.0024 (5)
O10.0267 (13)0.167 (3)0.0525 (16)0.0225 (16)0.0005 (11)0.0115 (17)
O20.101 (3)0.107 (3)0.103 (3)0.030 (2)0.024 (2)0.047 (2)
O30.096 (2)0.095 (2)0.0502 (16)0.0474 (18)0.0005 (15)0.0019 (15)
N10.0255 (13)0.072 (2)0.0448 (16)0.0129 (14)0.0023 (12)0.0027 (14)
C10.0277 (16)0.0483 (19)0.0453 (19)0.0021 (14)0.0011 (14)0.0085 (15)
C20.0284 (16)0.0369 (17)0.0474 (19)0.0032 (13)0.0020 (13)0.0086 (14)
C30.0401 (18)0.0447 (19)0.0422 (19)0.0062 (15)0.0024 (15)0.0086 (15)
C40.049 (2)0.062 (2)0.055 (2)0.0006 (19)0.0076 (17)0.0232 (19)
C50.049 (2)0.056 (2)0.077 (3)0.0143 (18)0.0050 (19)0.028 (2)
C60.0427 (19)0.046 (2)0.062 (2)0.0095 (16)0.0030 (17)0.0072 (17)
C70.0324 (18)0.072 (2)0.045 (2)0.0121 (17)0.0002 (15)0.0004 (17)
C80.0413 (19)0.092 (3)0.045 (2)0.0263 (19)0.0026 (16)0.0054 (19)
C90.051 (2)0.081 (3)0.0369 (19)0.0241 (19)0.0002 (16)0.0105 (18)
C100.048 (2)0.086 (3)0.041 (2)0.017 (2)0.0091 (17)0.006 (2)
C110.125 (4)0.085 (3)0.081 (3)0.052 (3)0.017 (3)0.014 (3)
Cl30.0618 (6)0.0576 (6)0.0508 (5)0.0042 (4)0.0204 (4)0.0103 (4)
Cl40.1133 (9)0.0655 (6)0.0601 (6)0.0138 (6)0.0011 (6)0.0318 (5)
O40.0243 (12)0.0540 (14)0.0864 (18)0.0042 (10)0.0049 (11)0.0247 (13)
O50.153 (3)0.105 (3)0.079 (2)0.066 (3)0.000 (2)0.002 (2)
O60.138 (3)0.112 (3)0.074 (2)0.059 (2)0.026 (2)0.0258 (19)
N20.0224 (12)0.0433 (15)0.0523 (16)0.0037 (12)0.0030 (12)0.0179 (13)
C120.0268 (15)0.0348 (17)0.0418 (17)0.0034 (13)0.0033 (13)0.0076 (14)
C130.0317 (16)0.0394 (17)0.0375 (17)0.0066 (13)0.0009 (13)0.0042 (14)
C140.055 (2)0.0405 (19)0.0450 (19)0.0094 (16)0.0069 (16)0.0126 (15)
C150.057 (2)0.0374 (19)0.074 (3)0.0035 (17)0.010 (2)0.0105 (18)
C160.048 (2)0.046 (2)0.077 (3)0.0041 (17)0.0098 (19)0.0033 (19)
C170.0425 (19)0.049 (2)0.052 (2)0.0017 (16)0.0097 (16)0.0066 (16)
C180.0260 (16)0.0455 (18)0.0408 (17)0.0058 (14)0.0014 (13)0.0110 (14)
C190.0317 (17)0.047 (2)0.070 (2)0.0002 (15)0.0084 (16)0.0231 (17)
C200.0411 (19)0.0398 (19)0.071 (2)0.0047 (15)0.0029 (17)0.0211 (17)
C210.065 (3)0.062 (3)0.067 (3)0.015 (2)0.001 (2)0.024 (2)
C220.186 (6)0.181 (6)0.086 (4)0.056 (5)0.026 (4)0.036 (4)
Geometric parameters (Å, º) top
Cl1—C21.725 (3)Cl3—C131.724 (3)
Cl2—C31.734 (3)Cl4—C141.734 (3)
O1—C71.217 (4)O4—C181.222 (3)
O2—C101.187 (4)O5—C211.181 (5)
O3—C101.309 (4)O6—C211.315 (4)
O3—C111.467 (5)O6—C221.454 (6)
N1—C71.344 (4)N2—C181.348 (4)
N1—C11.414 (4)N2—C121.411 (4)
N1—H1N0.852 (10)N2—H2N0.859 (10)
C1—C21.387 (4)C12—C171.382 (4)
C1—C61.393 (4)C12—C131.391 (4)
C2—C31.388 (4)C13—C141.382 (4)
C3—C41.372 (5)C14—C151.374 (5)
C4—C51.368 (5)C15—C161.372 (5)
C4—H40.9300C15—H150.9300
C5—C61.377 (5)C16—C171.376 (5)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
C7—C81.511 (4)C18—C191.504 (4)
C8—C91.516 (4)C19—C201.514 (4)
C8—H8A0.9700C19—H19A0.9700
C8—H8B0.9700C19—H19B0.9700
C9—C101.508 (5)C20—C211.490 (5)
C9—H9A0.9700C20—H20A0.9700
C9—H9B0.9700C20—H20B0.9700
C11—H11A0.9600C22—H22A0.9600
C11—H11B0.9600C22—H22B0.9600
C11—H11C0.9600C22—H22C0.9600
C10—O3—C11114.9 (4)C21—O6—C22115.6 (4)
C7—N1—C1123.9 (3)C18—N2—C12125.1 (2)
C7—N1—H1N118 (2)C18—N2—H2N118 (2)
C1—N1—H1N118 (2)C12—N2—H2N117 (2)
C2—C1—C6119.1 (3)C17—C12—C13119.0 (3)
C2—C1—N1120.8 (3)C17—C12—N2121.7 (3)
C6—C1—N1120.1 (3)C13—C12—N2119.3 (3)
C1—C2—C3119.8 (3)C14—C13—C12119.9 (3)
C1—C2—Cl1119.6 (2)C14—C13—Cl3120.7 (2)
C3—C2—Cl1120.6 (2)C12—C13—Cl3119.5 (2)
C4—C3—C2120.6 (3)C15—C14—C13120.7 (3)
C4—C3—Cl2118.8 (3)C15—C14—Cl4118.9 (3)
C2—C3—Cl2120.6 (3)C13—C14—Cl4120.4 (3)
C5—C4—C3119.4 (3)C16—C15—C14119.3 (3)
C5—C4—H4120.3C16—C15—H15120.4
C3—C4—H4120.3C14—C15—H15120.4
C4—C5—C6121.1 (3)C15—C16—C17120.8 (3)
C4—C5—H5119.4C15—C16—H16119.6
C6—C5—H5119.4C17—C16—H16119.6
C5—C6—C1119.8 (3)C16—C17—C12120.3 (3)
C5—C6—H6120.1C16—C17—H17119.8
C1—C6—H6120.1C12—C17—H17119.8
O1—C7—N1122.4 (3)O4—C18—N2122.9 (3)
O1—C7—C8122.1 (3)O4—C18—C19122.2 (3)
N1—C7—C8115.5 (3)N2—C18—C19114.8 (2)
C7—C8—C9111.8 (3)C18—C19—C20112.9 (3)
C7—C8—H8A109.3C18—C19—H19A109.0
C9—C8—H8A109.3C20—C19—H19A109.0
C7—C8—H8B109.3C18—C19—H19B109.0
C9—C8—H8B109.3C20—C19—H19B109.0
H8A—C8—H8B107.9H19A—C19—H19B107.8
C10—C9—C8111.9 (3)C21—C20—C19113.2 (3)
C10—C9—H9A109.2C21—C20—H20A108.9
C8—C9—H9A109.2C19—C20—H20A108.9
C10—C9—H9B109.2C21—C20—H20B108.9
C8—C9—H9B109.2C19—C20—H20B108.9
H9A—C9—H9B107.9H20A—C20—H20B107.8
O2—C10—O3124.7 (4)O5—C21—O6123.7 (4)
O2—C10—C9124.3 (4)O5—C21—C20125.7 (4)
O3—C10—C9111.0 (3)O6—C21—C20110.6 (3)
O3—C11—H11A109.5O6—C22—H22A109.5
O3—C11—H11B109.5O6—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
O3—C11—H11C109.5O6—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
C7—N1—C1—C2133.2 (3)C18—N2—C12—C1745.6 (4)
C7—N1—C1—C647.9 (5)C18—N2—C12—C13134.9 (3)
C6—C1—C2—C31.5 (4)C17—C12—C13—C140.4 (4)
N1—C1—C2—C3177.4 (3)N2—C12—C13—C14179.1 (3)
C6—C1—C2—Cl1178.1 (2)C17—C12—C13—Cl3178.7 (2)
N1—C1—C2—Cl13.1 (4)N2—C12—C13—Cl31.8 (4)
C1—C2—C3—C42.5 (5)C12—C13—C14—C151.0 (5)
Cl1—C2—C3—C4177.1 (2)Cl3—C13—C14—C15178.1 (3)
C1—C2—C3—Cl2177.3 (2)C12—C13—C14—Cl4179.9 (2)
Cl1—C2—C3—Cl23.2 (4)Cl3—C13—C14—Cl41.0 (4)
C2—C3—C4—C51.4 (5)C13—C14—C15—C160.7 (5)
Cl2—C3—C4—C5178.4 (3)Cl4—C14—C15—C16179.7 (3)
C3—C4—C5—C60.7 (5)C14—C15—C16—C170.2 (6)
C4—C5—C6—C11.7 (5)C15—C16—C17—C120.8 (5)
C2—C1—C6—C50.6 (5)C13—C12—C17—C160.4 (5)
N1—C1—C6—C5179.4 (3)N2—C12—C17—C16179.9 (3)
C1—N1—C7—O16.6 (6)C12—N2—C18—O42.8 (5)
C1—N1—C7—C8174.9 (3)C12—N2—C18—C19175.4 (3)
O1—C7—C8—C925.0 (5)O4—C18—C19—C2016.9 (5)
N1—C7—C8—C9156.5 (3)N2—C18—C19—C20164.9 (3)
C7—C8—C9—C1060.6 (4)C18—C19—C20—C2170.7 (4)
C11—O3—C10—O22.4 (6)C22—O6—C21—O52.2 (7)
C11—O3—C10—C9178.4 (3)C22—O6—C21—C20178.4 (4)
C8—C9—C10—O26.7 (5)C19—C20—C21—O54.6 (6)
C8—C9—C10—O3172.5 (3)C19—C20—C21—O6174.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.08 (1)2.899 (3)162 (3)
N2—H2N···O4ii0.86 (1)2.06 (2)2.880 (3)159 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H11Cl2NO3
Mr276.11
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)4.7356 (5), 15.868 (1), 17.158 (2)
α, β, γ (°)80.748 (8), 88.869 (8), 82.350 (8)
V3)1261.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.30 × 0.12 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.862, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8311, 4564, 3398
Rint0.019
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.101, 1.16
No. of reflections4564
No. of parameters313
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.852 (10)2.076 (14)2.899 (3)162 (3)
N2—H2N···O4ii0.859 (10)2.060 (15)2.880 (3)159 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o3064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds