organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2,4-di­nitro­benz­yl)pyridinium] bi­phenyl-4,4′-di­sulfonate trihydrate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 22 April 2010; accepted 22 April 2010; online 28 April 2010)

In the structure of the title salt, 2C12H10N3O4+·C12H8O6S22−·3H2O, determined at 173 K, the biphenyl-4,4′-disulfonate dianions lie across crystallographic inversion centres with the sulfonate groups inter­acting head-to-head through centrosymmetric cyclic bis­(water)-bridged hydrogen-bonding associations [graph set R44(11)], forming chains. The 2-(2,4-dinitro­benz­yl)pyridinium cations are linked to these chains through pyridinium–water N—H⋯O hydrogen bonds and a two-dimensional network is formed through water bridges between sulfonate and 2-nitro O atoms, while the structure also has weak cation–anion ππ aromatic ring inter­actions [minimum ring centroid separation = 3.8441 (13) Å].

Related literature

For structural data on 2-(2,4-dinitro­benz­yl)pyridine and related compounds, see Seff & Trueblood (1968[Seff, K. & Trueblood, K. N. (1968). Acta Cryst. B24, 1406-1415.]); Scherl et al. (1996[Scherl, M., Haarer, D., Fischer, J., DeCian, A., Lehn, J.-M. & Eichen, Y. (1996). J. Phys. Chem. 100, 16175-16186.]); Naumov et al. (2002[Naumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc. 124, 8540-8541.], 2005[Naumov, P., Sakurai, K., Ishikawa, T., Takahashi, J., Koshihawa, S. & Ohashi, Y. (2005). J. Phys. Chem. A, 109, 7264-7275.]). For bipyridine-4,4′-disulfonate compounds, see: Swift et al. (1998[Swift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater. 10, 4159-4168.]); Swift & Ward (1998[Swift, J. A. & Ward, M. D. (1998). Chem. Mater. 10, 1501-1504.]); Holman & Ward (2000[Holman, K. T. & Ward, M. D. (2000). Angew Chem. Int. Ed. 39, 1653-1655.]); Liao et al. (2001[Liao, C.-Z., Feng, X.-L., Yao, J.-H. & Cai, J.-W. (2001). Acta Cryst. C57, 1215-1216.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • 2C12H10N3O4+·C12H8O6S22−·3H2O

  • Mr = 886.83

  • Triclinic, [P \overline 1]

  • a = 8.3897 (3) Å

  • b = 10.6455 (4) Å

  • c = 11.7405 (5) Å

  • α = 97.879 (3)°

  • β = 96.926 (3)°

  • γ = 112.066 (4)°

  • V = 945.53 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.98, Tmax = 0.99

  • 8964 measured reflections

  • 3844 independent reflections

  • 3441 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.03

  • 3844 reflections

  • 296 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.95 (3) 1.71 (3) 2.655 (3) 175 (3)
O1W—H11W⋯O43Ai 0.88 (4) 1.84 (4) 2.716 (2) 175 (3)
O1W—H12W⋯O41A 0.80 (3) 2.01 (3) 2.806 (2) 172 (3)
O2W—H21W⋯O43A 0.82 (4) 1.99 (4) 2.761 (4) 155 (4)
O2W—H22W⋯O21ii 0.87 (3) 2.32 (3) 2.867 (2) 124 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The Lewis base 2-(2,4-dinitrobenzyl)pyridine (DNBP) has been a compound of considerable interest for more than 40 years because of its unusual photochromic characteristics. Irradiation of the colourless crystals with light of wavelength 400nm or less results in the formation of a deep blue coloration in a reversible tautomeric reaction. The structure of the colourless form has been determined (Seff & Trueblood, 1968; Scherl et al., 1996), while in another determination (Naumov et al., 2002), the structures of both forms were determined, confirming the presence of two-photon excitation giving nitro-assisted proton transfer (NAPT) involving an oxygen of the o-nitro substituent group. The effect is not present in the p-nitro-substituted isomer. Although the structure of the chloride salt of DNBP is known (Naumov et al., 2005), no other examples of analogous compounds are present in the CSD.

Of a number of reactions of DNBP with aromatic carboxylic and sulfonic acids in 50% ethanol–water, we found that only one, biphenyl-4,4'-disulfonic acid (BPDS) gave crystals of suitable quality for X-ray analysis, the title compound 2(C12H10N3O4+) C12H8O6S22- . 3H2O (I), the structure of which is reported here. The structures of 1:2 proton-transfer compounds of BPDS are also not prevalent, e.g. with β-alanine (Liao et al., 2001), but the bis(guanidinium) salt is notable as a co-host structure for cooperative guest recognition in clathrate formation with numerous aromatic monocyclic and polycyclic hydrocarbons (Swift & Ward, 1998; Swift et al., 1998; Holman & Ward, 2000).

With compound (I) (Fig. 1), the BPDS dianions lie across crystallographic inversion centres with the sulfonate groups interacting head-to-head through centrosymmetric cyclic bis(water)-bridged hydrogen-bonding associations [graph set R44(11) (Etter et al., 1990)], forming one-dimensional chain structures (Fig 2). The cations are linked to these chains through pyridinium N+–H···Owater hydrogen bonds (Table 1). The second water molecule (O2W) which has only 50% occupancy, forms a Osulfonate···H–O–H···Oo-nitro hydrogen bond, bridging the chains down the b axial direction, giving a two-dimensional network structure. There are also weak cation–anion ππ aromatic ring interactions present [minimum ring centroid separation 3.8441 (13) Å]. The hydrogen-bond-constrained o-nitro group in the DNBPY cation in the structure obviates any possible photochromic effects in this compound.

Also present in the BPDS dianions are short intramolecular H2A···H6Aiii/H6A···H2Aiii contacts (2.01 Å) [symmetry code (iii) -x + 2, -y + 1, -z +1] resulting from the BPDS species being planar. There is also a short intramolecular H···H contact involving an aromatic ring H and one of the water H atoms [H6···H22Wi, 2.06 Å]. With the DNBP cation the associated o-nitro group is rotated out of the plane of the benzene ring while the unassociated p-nitro group is essentially coplanar [torsion angles C11–C21–N21–O22, 149.17 (19)° and C31–C41–N41–O42, 178.02 (9)°].

Related literature top

For structural data on 2-(2,4-dinitrobenzyl)pyridine and related compounds, see Seff & Trueblood (1968); Scherl et al. (1996); Naumov et al. (2002, 2005). For bipyridine-4,4'-disulfonate compounds, see: Swift, Reynolds & Ward (1998); Swift & Ward (1998);Holman & Ward (2000); Liao et al. (2001). For graph-set notation, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 2-(2,4-dinitrobenzyl)pyridine with biphenyl-4,4'-disulfonic acid in 50 ml of 50% ethanol–water. After concentration to ca. 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless blade-shaped flat prisms (m.p. 413 K) from which a block section was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–H = 0.93 Å (aromatic) and 0.97 Å (aliphatic) and with Uiso(H) = 1.2Ueq(C)], and treated as riding. One of the water molecules was found to have partial occupancy which was refined to 0.50 (1) and subsequently set invariant.

Structure description top

The Lewis base 2-(2,4-dinitrobenzyl)pyridine (DNBP) has been a compound of considerable interest for more than 40 years because of its unusual photochromic characteristics. Irradiation of the colourless crystals with light of wavelength 400nm or less results in the formation of a deep blue coloration in a reversible tautomeric reaction. The structure of the colourless form has been determined (Seff & Trueblood, 1968; Scherl et al., 1996), while in another determination (Naumov et al., 2002), the structures of both forms were determined, confirming the presence of two-photon excitation giving nitro-assisted proton transfer (NAPT) involving an oxygen of the o-nitro substituent group. The effect is not present in the p-nitro-substituted isomer. Although the structure of the chloride salt of DNBP is known (Naumov et al., 2005), no other examples of analogous compounds are present in the CSD.

Of a number of reactions of DNBP with aromatic carboxylic and sulfonic acids in 50% ethanol–water, we found that only one, biphenyl-4,4'-disulfonic acid (BPDS) gave crystals of suitable quality for X-ray analysis, the title compound 2(C12H10N3O4+) C12H8O6S22- . 3H2O (I), the structure of which is reported here. The structures of 1:2 proton-transfer compounds of BPDS are also not prevalent, e.g. with β-alanine (Liao et al., 2001), but the bis(guanidinium) salt is notable as a co-host structure for cooperative guest recognition in clathrate formation with numerous aromatic monocyclic and polycyclic hydrocarbons (Swift & Ward, 1998; Swift et al., 1998; Holman & Ward, 2000).

With compound (I) (Fig. 1), the BPDS dianions lie across crystallographic inversion centres with the sulfonate groups interacting head-to-head through centrosymmetric cyclic bis(water)-bridged hydrogen-bonding associations [graph set R44(11) (Etter et al., 1990)], forming one-dimensional chain structures (Fig 2). The cations are linked to these chains through pyridinium N+–H···Owater hydrogen bonds (Table 1). The second water molecule (O2W) which has only 50% occupancy, forms a Osulfonate···H–O–H···Oo-nitro hydrogen bond, bridging the chains down the b axial direction, giving a two-dimensional network structure. There are also weak cation–anion ππ aromatic ring interactions present [minimum ring centroid separation 3.8441 (13) Å]. The hydrogen-bond-constrained o-nitro group in the DNBPY cation in the structure obviates any possible photochromic effects in this compound.

Also present in the BPDS dianions are short intramolecular H2A···H6Aiii/H6A···H2Aiii contacts (2.01 Å) [symmetry code (iii) -x + 2, -y + 1, -z +1] resulting from the BPDS species being planar. There is also a short intramolecular H···H contact involving an aromatic ring H and one of the water H atoms [H6···H22Wi, 2.06 Å]. With the DNBP cation the associated o-nitro group is rotated out of the plane of the benzene ring while the unassociated p-nitro group is essentially coplanar [torsion angles C11–C21–N21–O22, 149.17 (19)° and C31–C41–N41–O42, 178.02 (9)°].

For structural data on 2-(2,4-dinitrobenzyl)pyridine and related compounds, see Seff & Trueblood (1968); Scherl et al. (1996); Naumov et al. (2002, 2005). For bipyridine-4,4'-disulfonate compounds, see: Swift, Reynolds & Ward (1998); Swift & Ward (1998);Holman & Ward (2000); Liao et al. (2001). For graph-set notation, see: Etter et al. (1990).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the DNBP cation, the BPDS dianion and the two water molecules of solvation [O1W , O2W, with the latter having SOF = 0.5 (1)], in the asymmetric unit of (I). The dianion lies across an inversion centre [symmetry code (iii) -x + 2, -y + 1, -z +1] and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The two-dimensional hydrogen-bonded network structure of (I) extending viewed down the approximate a cell direction showing the water-linked BPDS chains and water-bridged extensions down b. Hydrogen bonds are shown as dashed lines and non-interactive H atoms are omitted. For symmetry codes, see Table 1.
Bis[2-(2,4-dinitrobenzyl)pyridinium] biphenyl-4,4'-disulfonate trihydrate top
Crystal data top
2C12H10N3O4+·C12H8O6S22·3H2OZ = 1
Mr = 886.83F(000) = 460
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Melting point: 413 K
a = 8.3897 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6455 (4) ÅCell parameters from 5908 reflections
c = 11.7405 (5) Åθ = 3.0–32.3°
α = 97.879 (3)°µ = 0.23 mm1
β = 96.926 (3)°T = 173 K
γ = 112.066 (4)°Prism, colourless
V = 945.53 (7) Å30.30 × 0.25 × 0.15 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3844 independent reflections
Radiation source: Enhance (Mo) X-ray source3441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.08 pixels mm-1θmax = 26.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.98, Tmax = 0.99l = 1414
8964 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.4454P]
where P = (Fo2 + 2Fc2)/3
3844 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
2C12H10N3O4+·C12H8O6S22·3H2Oγ = 112.066 (4)°
Mr = 886.83V = 945.53 (7) Å3
Triclinic, P1Z = 1
a = 8.3897 (3) ÅMo Kα radiation
b = 10.6455 (4) ŵ = 0.23 mm1
c = 11.7405 (5) ÅT = 173 K
α = 97.879 (3)°0.30 × 0.25 × 0.15 mm
β = 96.926 (3)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3441 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.020
8964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3844 reflectionsΔρmin = 0.30 e Å3
296 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O210.5436 (2)0.07535 (18)0.71892 (15)0.0487 (6)
O220.51554 (19)0.13704 (18)0.55354 (14)0.0460 (5)
O410.9552 (2)0.10842 (19)0.32892 (14)0.0548 (6)
O421.2220 (2)0.1865 (2)0.41565 (15)0.0627 (7)
N10.7507 (2)0.15288 (18)1.02586 (14)0.0291 (5)
N210.6039 (2)0.12314 (17)0.63793 (15)0.0319 (5)
N411.0680 (2)0.15615 (18)0.41645 (15)0.0350 (5)
C20.8078 (2)0.1261 (2)0.92656 (16)0.0276 (5)
C30.8089 (3)0.0026 (2)0.89375 (18)0.0348 (6)
C40.7505 (3)0.1008 (2)0.9630 (2)0.0403 (7)
C50.6935 (3)0.0690 (2)1.06403 (19)0.0400 (7)
C60.6954 (3)0.0601 (2)1.09439 (18)0.0364 (7)
C110.9122 (2)0.21211 (18)0.74513 (16)0.0256 (5)
C210.7921 (2)0.16202 (18)0.63956 (16)0.0260 (5)
C310.8394 (2)0.14506 (19)0.53166 (17)0.0278 (5)
C411.0145 (2)0.17560 (19)0.53089 (16)0.0275 (5)
C511.1393 (2)0.2235 (2)0.63196 (17)0.0303 (6)
C611.0871 (2)0.2431 (2)0.73779 (17)0.0291 (6)
C710.8663 (3)0.2446 (2)0.86313 (17)0.0318 (6)
S4A0.60027 (6)0.49714 (5)0.81725 (4)0.0279 (2)
O41A0.71609 (19)0.57569 (16)0.92704 (12)0.0391 (5)
O42A0.51335 (19)0.35151 (15)0.81872 (14)0.0412 (5)
O43A0.4786 (2)0.55635 (18)0.77623 (13)0.0436 (5)
C1A0.9443 (2)0.50258 (19)0.54441 (16)0.0272 (6)
C2A0.7662 (3)0.4645 (3)0.51220 (19)0.0576 (9)
C3A0.6617 (3)0.4658 (3)0.59494 (19)0.0531 (9)
C4A0.7357 (2)0.50677 (19)0.71157 (16)0.0263 (6)
C5A0.9122 (3)0.5469 (2)0.74546 (18)0.0399 (6)
C6A1.0155 (3)0.5444 (2)0.66214 (19)0.0409 (7)
O1W0.7300 (2)0.39624 (19)1.07848 (14)0.0422 (6)
O2W0.4510 (4)0.7847 (3)0.7040 (3)0.0475 (11)0.500
H10.746 (4)0.240 (3)1.049 (2)0.059 (8)*
H30.848300.023800.825900.0420*
H40.750000.188300.940900.0480*
H50.654400.134201.110600.0480*
H60.658400.083801.162600.0440*
H310.757000.114400.462600.0330*
H511.256200.242100.629000.0360*
H611.171100.278200.806200.0350*
H710.967900.319200.912600.0380*
H720.773800.278000.852400.0380*
H2A0.715100.437300.433200.0690*
H3A0.541800.439000.571400.0640*
H5A0.963000.575900.824500.0480*
H6A1.135400.571600.686200.0490*
H11W0.662 (4)0.407 (3)1.127 (3)0.069 (9)*
H12W0.719 (4)0.441 (3)1.031 (3)0.062 (9)*
H21W0.460 (5)0.730 (4)0.745 (4)0.060 (10)*0.500
H22W0.515 (5)0.860 (3)0.755 (3)0.065 (10)*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0343 (8)0.0630 (11)0.0535 (10)0.0155 (8)0.0225 (7)0.0261 (8)
O220.0318 (8)0.0596 (10)0.0475 (9)0.0198 (8)0.0040 (7)0.0119 (8)
O410.0577 (11)0.0678 (12)0.0295 (8)0.0162 (9)0.0131 (8)0.0011 (8)
O420.0491 (10)0.1108 (16)0.0475 (10)0.0453 (11)0.0280 (8)0.0225 (10)
N10.0249 (8)0.0370 (10)0.0239 (8)0.0107 (7)0.0051 (6)0.0052 (7)
N210.0282 (9)0.0288 (9)0.0387 (9)0.0105 (7)0.0107 (7)0.0053 (7)
N410.0446 (10)0.0357 (9)0.0341 (9)0.0210 (8)0.0187 (8)0.0131 (8)
C20.0229 (9)0.0318 (10)0.0246 (9)0.0074 (8)0.0048 (7)0.0042 (8)
C30.0401 (11)0.0317 (11)0.0320 (10)0.0133 (9)0.0092 (9)0.0057 (8)
C40.0397 (12)0.0326 (11)0.0442 (12)0.0116 (10)0.0008 (9)0.0097 (9)
C50.0294 (11)0.0508 (13)0.0386 (12)0.0104 (10)0.0044 (9)0.0236 (10)
C60.0273 (10)0.0550 (14)0.0270 (10)0.0136 (10)0.0067 (8)0.0152 (9)
C110.0304 (10)0.0207 (9)0.0275 (9)0.0096 (8)0.0115 (7)0.0068 (7)
C210.0253 (9)0.0213 (9)0.0334 (10)0.0094 (7)0.0102 (7)0.0075 (7)
C310.0301 (10)0.0254 (9)0.0275 (9)0.0106 (8)0.0058 (7)0.0054 (7)
C410.0331 (10)0.0259 (9)0.0287 (9)0.0140 (8)0.0134 (8)0.0090 (8)
C510.0265 (10)0.0333 (10)0.0366 (11)0.0141 (8)0.0132 (8)0.0116 (8)
C610.0286 (10)0.0302 (10)0.0286 (10)0.0115 (8)0.0051 (8)0.0072 (8)
C710.0381 (11)0.0269 (10)0.0294 (10)0.0106 (9)0.0131 (8)0.0034 (8)
S4A0.0314 (3)0.0369 (3)0.0266 (2)0.0204 (2)0.0159 (2)0.0132 (2)
O41A0.0427 (8)0.0521 (9)0.0272 (7)0.0214 (7)0.0150 (6)0.0081 (6)
O42A0.0408 (8)0.0418 (9)0.0492 (9)0.0168 (7)0.0242 (7)0.0205 (7)
O43A0.0532 (9)0.0702 (11)0.0371 (8)0.0471 (9)0.0254 (7)0.0254 (8)
C1A0.0332 (10)0.0285 (10)0.0298 (10)0.0170 (8)0.0174 (8)0.0136 (8)
C2A0.0474 (14)0.127 (2)0.0247 (11)0.0570 (16)0.0166 (10)0.0264 (13)
C3A0.0385 (12)0.113 (2)0.0303 (11)0.0483 (14)0.0158 (10)0.0256 (13)
C4A0.0325 (10)0.0283 (10)0.0295 (9)0.0187 (8)0.0174 (8)0.0129 (8)
C5A0.0303 (10)0.0487 (13)0.0278 (10)0.0045 (9)0.0116 (8)0.0068 (9)
C6A0.0241 (10)0.0476 (13)0.0370 (11)0.0014 (9)0.0144 (8)0.0061 (10)
O1W0.0555 (10)0.0677 (11)0.0272 (8)0.0456 (9)0.0177 (7)0.0154 (8)
O2W0.0471 (19)0.0426 (18)0.0560 (15)0.0206 (15)0.0161 (15)0.0066 (15)
Geometric parameters (Å, º) top
S4A—O42A1.4479 (16)C21—C311.381 (3)
S4A—O43A1.4558 (19)C31—C411.382 (3)
S4A—C4A1.7687 (19)C41—C511.378 (3)
S4A—O41A1.4481 (15)C51—C611.381 (3)
O21—N211.214 (2)C3—H30.9300
O22—N211.224 (2)C4—H40.9300
O41—N411.213 (2)C5—H50.9300
O42—N411.210 (3)C6—H60.9300
O1W—H11W0.88 (4)C31—H310.9300
O1W—H12W0.80 (3)C51—H510.9300
O2W—H21W0.82 (4)C61—H610.9300
O2W—H22W0.87 (3)C71—H710.9700
N1—C61.342 (3)C71—H720.9700
N1—C21.348 (2)C1A—C2A1.381 (3)
N21—C211.471 (3)C1A—C6A1.378 (3)
N41—C411.479 (3)C1A—C1Ai1.491 (3)
N1—H10.95 (3)C2A—C3A1.387 (4)
C2—C31.375 (3)C3A—C4A1.371 (3)
C2—C711.506 (3)C4A—C5A1.367 (3)
C3—C41.392 (3)C5A—C6A1.387 (3)
C4—C51.378 (3)C2A—H2A0.9300
C5—C61.365 (3)C3A—H3A0.9300
C11—C611.394 (3)C5A—H5A0.9300
C11—C711.512 (3)C6A—H6A0.9300
C11—C211.396 (3)
O43A—S4A—C4A105.78 (9)C2—C3—H3120.00
O41A—S4A—C4A106.12 (9)C4—C3—H3120.00
O41A—S4A—O42A112.56 (9)C5—C4—H4120.00
O41A—S4A—O43A113.37 (10)C3—C4—H4120.00
O42A—S4A—O43A112.51 (10)C6—C5—H5121.00
O42A—S4A—C4A105.74 (9)C4—C5—H5121.00
H11W—O1W—H12W104 (3)N1—C6—H6120.00
H21W—O2W—H22W97 (4)C5—C6—H6120.00
C2—N1—C6123.13 (19)C41—C31—H31121.00
O21—N21—O22123.47 (19)C21—C31—H31121.00
O22—N21—C21118.33 (17)C61—C51—H51121.00
O21—N21—C21118.17 (17)C41—C51—H51121.00
O42—N41—C41118.02 (17)C11—C61—H61119.00
O41—N41—O42123.59 (19)C51—C61—H61119.00
O41—N41—C41118.38 (18)H71—C71—H72107.00
C6—N1—H1117.1 (16)C2—C71—H72108.00
C2—N1—H1119.8 (16)C11—C71—H71108.00
N1—C2—C3118.39 (18)C11—C71—H72108.00
N1—C2—C71114.88 (18)C2—C71—H71108.00
C3—C2—C71126.73 (18)C1Ai—C1A—C2A121.47 (17)
C2—C3—C4119.4 (2)C1Ai—C1A—C6A121.02 (18)
C3—C4—C5120.3 (2)C2A—C1A—C6A117.51 (19)
C4—C5—C6118.71 (19)C1A—C2A—C3A121.5 (2)
N1—C6—C5120.0 (2)C2A—C3A—C4A119.8 (2)
C61—C11—C71118.98 (18)S4A—C4A—C5A120.50 (15)
C21—C11—C71124.29 (18)C3A—C4A—C5A119.8 (2)
C21—C11—C61116.55 (17)S4A—C4A—C3A119.64 (17)
C11—C21—C31123.34 (17)C4A—C5A—C6A120.1 (2)
N21—C21—C11120.82 (16)C1A—C6A—C5A121.4 (2)
N21—C21—C31115.84 (16)C1A—C2A—H2A119.00
C21—C31—C41117.06 (17)C3A—C2A—H2A119.00
N41—C41—C51119.43 (17)C4A—C3A—H3A120.00
C31—C41—C51122.50 (17)C2A—C3A—H3A120.00
N41—C41—C31118.07 (17)C4A—C5A—H5A120.00
C41—C51—C61118.54 (17)C6A—C5A—H5A120.00
C11—C61—C51121.97 (18)C1A—C6A—H6A119.00
C2—C71—C11115.69 (17)C5A—C6A—H6A119.00
O43A—S4A—C4A—C5A137.52 (17)C61—C11—C21—C311.2 (3)
O42A—S4A—C4A—C3A73.2 (2)C71—C11—C21—N216.5 (3)
O41A—S4A—C4A—C3A167.09 (19)C71—C11—C21—C31173.82 (18)
O41A—S4A—C4A—C5A16.81 (19)C21—C11—C61—C511.0 (3)
O42A—S4A—C4A—C5A102.95 (18)C71—C11—C61—C51176.22 (18)
O43A—S4A—C4A—C3A46.4 (2)N21—C21—C31—C41177.51 (17)
C6—N1—C2—C71179.2 (2)C11—C21—C31—C412.2 (3)
C6—N1—C2—C30.2 (3)C21—C31—C41—N41179.06 (17)
C2—N1—C6—C50.7 (3)C21—C31—C41—C511.2 (3)
O21—N21—C21—C1132.8 (3)C31—C41—C51—C610.8 (3)
O21—N21—C21—C31146.90 (19)N41—C41—C51—C61178.96 (18)
O22—N21—C21—C3131.1 (3)C41—C51—C61—C111.9 (3)
O22—N21—C21—C11149.17 (19)C6A—C1A—C2A—C3A1.1 (4)
O42—N41—C41—C31178.02 (19)C1Ai—C1A—C2A—C3A178.3 (2)
O42—N41—C41—C511.7 (3)C2A—C1A—C6A—C5A0.7 (3)
O41—N41—C41—C51176.96 (19)C1Ai—C1A—C6A—C5A178.72 (19)
O41—N41—C41—C313.3 (3)C2A—C1A—C1Ai—C2Ai180.0 (2)
N1—C2—C71—C11173.63 (18)C2A—C1A—C1Ai—C6Ai0.7 (3)
N1—C2—C3—C40.4 (3)C6A—C1A—C1Ai—C2Ai0.7 (3)
C71—C2—C3—C4179.8 (2)C6A—C1A—C1Ai—C6Ai180.0 (2)
C3—C2—C71—C117.0 (3)C1A—C2A—C3A—C4A0.6 (4)
C2—C3—C4—C50.6 (4)C2A—C3A—C4A—S4A175.7 (2)
C3—C4—C5—C60.1 (4)C2A—C3A—C4A—C5A0.4 (4)
C4—C5—C6—N10.5 (4)S4A—C4A—C5A—C6A175.26 (16)
C21—C11—C71—C288.6 (2)C3A—C4A—C5A—C6A0.8 (3)
C61—C11—C71—C296.6 (2)C4A—C5A—C6A—C1A0.3 (3)
C61—C11—C21—N21178.55 (17)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.95 (3)1.71 (3)2.655 (3)175 (3)
O1W—H11W···O43Aii0.88 (4)1.84 (4)2.716 (2)175 (3)
O1W—H12W···O41A0.80 (3)2.01 (3)2.806 (2)172 (3)
O2W—H21W···O43A0.82 (4)1.99 (4)2.761 (4)155 (4)
O2W—H22W···O21iii0.87 (3)2.32 (3)2.867 (2)124 (3)
C2A—H2A···O2Wiv0.932.463.195 (4)136
C4—H4···O41Av0.932.403.309 (3)165
C5—H5···O42Avi0.932.533.427 (3)163
C5A—H5A···O41A0.932.522.897 (3)105
C5A—H5A···O1Wvii0.932.583.232 (3)128
C6—H6···O2Wii0.932.443.316 (4)156
C6—H6···O21vi0.932.603.265 (3)129
C71—H72···O210.972.462.799 (3)100
C71—H72···O42A0.972.593.558 (3)176
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x+1, y, z+2; (vii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula2C12H10N3O4+·C12H8O6S22·3H2O
Mr886.83
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.3897 (3), 10.6455 (4), 11.7405 (5)
α, β, γ (°)97.879 (3), 96.926 (3), 112.066 (4)
V3)945.53 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
8964, 3844, 3441
Rint0.020
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.03
No. of reflections3844
No. of parameters296
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.95 (3)1.71 (3)2.655 (3)175 (3)
O1W—H11W···O43Ai0.88 (4)1.84 (4)2.716 (2)175 (3)
O1W—H12W···O41A0.80 (3)2.01 (3)2.806 (2)172 (3)
O2W—H21W···O43A0.82 (4)1.99 (4)2.761 (4)155 (4)
O2W—H22W···O21ii0.87 (3)2.32 (3)2.867 (2)124 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHolman, K. T. & Ward, M. D. (2000). Angew Chem. Int. Ed. 39, 1653–1655.  CrossRef CAS Google Scholar
First citationLiao, C.-Z., Feng, X.-L., Yao, J.-H. & Cai, J.-W. (2001). Acta Cryst. C57, 1215–1216.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaumov, P., Sakurai, K., Ishikawa, T., Takahashi, J., Koshihawa, S. & Ohashi, Y. (2005). J. Phys. Chem. A, 109, 7264–7275.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNaumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc. 124, 8540–8541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationScherl, M., Haarer, D., Fischer, J., DeCian, A., Lehn, J.-M. & Eichen, Y. (1996). J. Phys. Chem. 100, 16175–16186.  CSD CrossRef CAS Web of Science Google Scholar
First citationSeff, K. & Trueblood, K. N. (1968). Acta Cryst. B24, 1406–1415.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater. 10, 4159–4168.  Web of Science CSD CrossRef CAS Google Scholar
First citationSwift, J. A. & Ward, M. D. (1998). Chem. Mater. 10, 1501–1504.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds