organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,5-Di­hydroxy­benzyl­­idene)-2-hydr­­oxy-3-methyl­benzohydrazide

aDepartment of Chemistry and Life Science, Chuzhou University, Chuzhou, Anhui 239000, People's Republic of China
*Correspondence e-mail: hanyouyue@126.com

(Received 6 April 2010; accepted 11 April 2010; online 17 April 2010)

In the title compound, C15H14N2O4, the dihedral angle between the two benzene rings is 4.1 (2)°. The mol­ecule adopts an E configuration with respect to the C=N bond. There are intra­molecular O—H⋯N and O—H⋯O hydrogen bonds in the mol­ecule. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming chains running along the c axis.

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010[Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688-699.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For the crystal structures of hydrazones, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.]); Lin & Sang (2009[Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.]); Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]). For hydrazone compounds recently reported by us, see: Han & Zhao (2010a[Han, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025.],b[Han, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For similar compounds, see: Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.]); Ning & Xu (2009[Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905-o906.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Monoclinic, P 21 /c

  • a = 13.333 (2) Å

  • b = 7.316 (1) Å

  • c = 13.738 (2) Å

  • β = 94.742 (2)°

  • V = 1335.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.25 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.977

  • 7636 measured reflections

  • 3002 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.136

  • S = 0.82

  • 3002 reflections

  • 197 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.82 2.5452 (19) 147
O3—H3⋯N2 0.82 1.85 2.576 (2) 146
O4—H4⋯O3i 0.82 1.97 2.774 (2) 169
N1—H1A⋯O4ii 0.90 (2) 2.27 (2) 3.072 (2) 148 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). As a continuation of our work on the structural characterization of such compounds (Han & Zhao, 2010a,b), the title new hydrazone compound is reported.

In the title compound, Fig. 1, the dihedral angle between the two benzene rings is 4.1 (2)°. The molecule adopts an E configuration with respect to the CN bond. There are intramolecular O–H···N and O–H···O hydrogen bonds in the molecule (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in the similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For the crystal structures of hydrazones, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010). For hydrazone compounds recently reported by us, see: Han & Zhao (2010a,b). For bond-length data, see: Allen et al. (1987). For similar compounds, see: Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009).

Experimental top

A mixture of 2,5-dihydroxybenzaldehyde (0.138 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml methanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, single crystals of the title compound, suitable for X-ray diffraction, were formed.

Refinement top

Amino H atom was located from a difference Fourier map and refined isotropically, with N–H distance restrained to 0.90 (1) Å. Other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O).

Structure description top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). As a continuation of our work on the structural characterization of such compounds (Han & Zhao, 2010a,b), the title new hydrazone compound is reported.

In the title compound, Fig. 1, the dihedral angle between the two benzene rings is 4.1 (2)°. The molecule adopts an E configuration with respect to the CN bond. There are intramolecular O–H···N and O–H···O hydrogen bonds in the molecule (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in the similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For the crystal structures of hydrazones, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010). For hydrazone compounds recently reported by us, see: Han & Zhao (2010a,b). For bond-length data, see: Allen et al. (1987). For similar compounds, see: Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with atom labels and 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound as viewed down b. Hydrogen bonds are shown as dashed lines.
N'-(2,5-Dihydroxybenzylidene)-2-hydroxy-3-methylbenzohydrazide top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.333 (2) ÅCell parameters from 1316 reflections
b = 7.316 (1) Åθ = 2.7–24.5°
c = 13.738 (2) ŵ = 0.11 mm1
β = 94.742 (2)°T = 298 K
V = 1335.5 (3) Å3Block, colorless
Z = 40.25 × 0.23 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3002 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1716
Tmin = 0.974, Tmax = 0.977k = 99
7636 measured reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C15H14N2O4V = 1335.5 (3) Å3
Mr = 286.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.333 (2) ŵ = 0.11 mm1
b = 7.316 (1) ÅT = 298 K
c = 13.738 (2) Å0.25 × 0.23 × 0.22 mm
β = 94.742 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3002 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1457 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.977Rint = 0.087
7636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.22 e Å3
3002 reflectionsΔρmin = 0.26 e Å3
197 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25674 (12)0.4205 (2)0.31421 (10)0.0660 (5)
H10.20360.37850.28930.099*
O20.12591 (10)0.3298 (2)0.17731 (10)0.0530 (4)
O30.10549 (10)0.1488 (2)0.03610 (9)0.0528 (4)
H30.04980.19580.04670.079*
O40.22237 (11)0.1219 (2)0.35891 (9)0.0555 (4)
H40.19370.20070.38880.083*
N10.15386 (12)0.3685 (2)0.01891 (11)0.0451 (4)
H1A0.1913 (15)0.405 (3)0.0290 (12)0.080*
N20.06052 (11)0.2950 (2)0.00814 (11)0.0441 (4)
C10.28436 (13)0.4534 (3)0.14397 (13)0.0401 (5)
C20.31477 (14)0.4737 (3)0.24325 (14)0.0447 (5)
C30.40822 (15)0.5532 (3)0.27436 (15)0.0513 (6)
C40.46896 (16)0.6081 (3)0.20408 (17)0.0573 (6)
H4A0.53100.66060.22350.069*
C50.44147 (15)0.5884 (3)0.10597 (16)0.0570 (6)
H50.48460.62710.06020.068*
C60.34987 (14)0.5113 (3)0.07559 (14)0.0496 (5)
H60.33150.49760.00920.060*
C70.43835 (18)0.5770 (4)0.38160 (16)0.0771 (8)
H7A0.50620.62190.39030.116*
H7B0.43420.46150.41420.116*
H7C0.39390.66280.40880.116*
C80.18276 (14)0.3793 (3)0.11571 (14)0.0412 (5)
C90.03111 (14)0.2882 (3)0.09837 (14)0.0436 (5)
H90.07200.33350.14440.052*
C100.06605 (13)0.2097 (3)0.12963 (13)0.0385 (5)
C110.13067 (14)0.1425 (3)0.06259 (13)0.0404 (5)
C120.22281 (14)0.0702 (3)0.09566 (15)0.0470 (5)
H120.26530.02460.05110.056*
C130.25242 (14)0.0648 (3)0.19390 (14)0.0462 (5)
H130.31500.01680.21520.055*
C140.18970 (14)0.1304 (3)0.26101 (13)0.0413 (5)
C150.09706 (13)0.2005 (3)0.22897 (13)0.0418 (5)
H150.05440.24250.27430.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0648 (10)0.0952 (13)0.0377 (8)0.0074 (9)0.0018 (7)0.0016 (8)
O20.0484 (8)0.0677 (10)0.0431 (8)0.0063 (7)0.0044 (7)0.0013 (7)
O30.0568 (9)0.0703 (10)0.0313 (8)0.0052 (8)0.0034 (6)0.0003 (7)
O40.0528 (9)0.0748 (12)0.0365 (8)0.0068 (7)0.0098 (7)0.0039 (7)
N10.0382 (9)0.0598 (12)0.0362 (10)0.0042 (8)0.0040 (7)0.0021 (8)
N20.0398 (9)0.0505 (11)0.0403 (10)0.0002 (7)0.0068 (7)0.0037 (8)
C10.0392 (10)0.0443 (12)0.0356 (11)0.0047 (9)0.0037 (9)0.0008 (9)
C20.0458 (11)0.0502 (13)0.0375 (11)0.0054 (10)0.0001 (9)0.0005 (9)
C30.0493 (12)0.0555 (14)0.0463 (13)0.0090 (10)0.0138 (10)0.0075 (11)
C40.0376 (11)0.0633 (16)0.0685 (16)0.0023 (10)0.0098 (11)0.0054 (12)
C50.0404 (12)0.0762 (16)0.0538 (14)0.0035 (11)0.0004 (10)0.0049 (12)
C60.0447 (11)0.0667 (15)0.0364 (11)0.0021 (11)0.0031 (9)0.0001 (10)
C70.0754 (16)0.098 (2)0.0525 (15)0.0085 (14)0.0247 (13)0.0169 (14)
C80.0413 (11)0.0435 (12)0.0378 (11)0.0035 (9)0.0024 (9)0.0022 (9)
C90.0392 (11)0.0523 (13)0.0389 (12)0.0015 (9)0.0011 (9)0.0034 (10)
C100.0371 (10)0.0439 (12)0.0342 (11)0.0028 (9)0.0005 (8)0.0039 (9)
C110.0456 (11)0.0445 (12)0.0305 (11)0.0037 (9)0.0006 (9)0.0016 (9)
C120.0446 (11)0.0514 (13)0.0456 (12)0.0002 (9)0.0082 (10)0.0012 (10)
C130.0354 (10)0.0516 (13)0.0505 (13)0.0042 (9)0.0023 (9)0.0051 (10)
C140.0399 (11)0.0492 (12)0.0337 (11)0.0042 (9)0.0039 (9)0.0035 (9)
C150.0381 (11)0.0549 (13)0.0323 (11)0.0000 (9)0.0024 (8)0.0023 (9)
Geometric parameters (Å, º) top
O1—C21.351 (2)C4—H4A0.9300
O1—H10.8200C5—C61.378 (3)
O2—C81.236 (2)C5—H50.9300
O3—C111.370 (2)C6—H60.9300
O3—H30.8200C7—H7A0.9600
O4—C141.380 (2)C7—H7B0.9600
O4—H40.8200C7—H7C0.9600
N1—C81.356 (2)C9—C101.449 (3)
N1—N21.378 (2)C9—H90.9300
N1—H1A0.899 (19)C10—C151.395 (2)
N2—C91.270 (2)C10—C111.401 (3)
C1—C21.398 (2)C11—C121.379 (3)
C1—C61.400 (3)C12—C131.375 (3)
C1—C81.481 (3)C12—H120.9300
C2—C31.409 (3)C13—C141.381 (3)
C3—C41.371 (3)C13—H130.9300
C3—C71.505 (3)C14—C151.376 (2)
C4—C51.375 (3)C15—H150.9300
C2—O1—H1109.5C3—C7—H7C109.5
C11—O3—H3109.5H7A—C7—H7C109.5
C14—O4—H4109.5H7B—C7—H7C109.5
C8—N1—N2117.67 (16)O2—C8—N1120.92 (18)
C8—N1—H1A124.8 (15)O2—C8—C1121.82 (17)
N2—N1—H1A117.5 (15)N1—C8—C1117.26 (18)
C9—N2—N1118.55 (16)N2—C9—C10120.09 (18)
C2—C1—C6118.40 (17)N2—C9—H9120.0
C2—C1—C8118.67 (18)C10—C9—H9120.0
C6—C1—C8122.87 (17)C15—C10—C11118.53 (17)
O1—C2—C1122.42 (18)C15—C10—C9119.64 (18)
O1—C2—C3116.41 (18)C11—C10—C9121.83 (17)
C1—C2—C3121.17 (19)O3—C11—C12118.53 (18)
C4—C3—C2117.80 (18)O3—C11—C10121.64 (17)
C4—C3—C7122.02 (19)C12—C11—C10119.82 (17)
C2—C3—C7120.2 (2)C13—C12—C11120.65 (19)
C3—C4—C5122.33 (19)C13—C12—H12119.7
C3—C4—H4A118.8C11—C12—H12119.7
C5—C4—H4A118.8C12—C13—C14120.31 (17)
C4—C5—C6119.8 (2)C12—C13—H13119.8
C4—C5—H5120.1C14—C13—H13119.8
C6—C5—H5120.1C15—C14—O4122.08 (18)
C5—C6—C1120.46 (19)C15—C14—C13119.55 (17)
C5—C6—H6119.8O4—C14—C13118.36 (16)
C1—C6—H6119.8C14—C15—C10121.11 (18)
C3—C7—H7A109.5C14—C15—H15119.4
C3—C7—H7B109.5C10—C15—H15119.4
H7A—C7—H7B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.822.5452 (19)147
O3—H3···N20.821.852.576 (2)146
O4—H4···O3i0.821.972.774 (2)169
N1—H1A···O4ii0.90 (2)2.27 (2)3.072 (2)148 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.333 (2), 7.316 (1), 13.738 (2)
β (°) 94.742 (2)
V3)1335.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.974, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7636, 3002, 1457
Rint0.087
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.136, 0.82
No. of reflections3002
No. of parameters197
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.822.5452 (19)147.0
O3—H3···N20.821.852.576 (2)146.0
O4—H4···O3i0.821.972.774 (2)168.6
N1—H1A···O4ii0.899 (19)2.272 (15)3.072 (2)148 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNing, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688–699.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds